首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   15篇
  223篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   20篇
  2013年   15篇
  2012年   22篇
  2011年   19篇
  2010年   17篇
  2009年   10篇
  2008年   5篇
  2007年   20篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
71.
One of the important questions in the field of virus research is about the balance between latent and lytic cycles of replication. Kaposi''s sarcoma-associated herpesvirus (KSHV) remains predominantly in a latent state, with only 1–3% of cells supporting a lytic replication at any time. KSHV glycoprotein B (gB) is expressed not only on the virus envelope but also on the surfaces of the few cells supporting lytic replication. Using co-culture experiments, we determined that expression of KSHV gB on as few as 1–2% of human dermal microvascular endothelial cells resulted in a 10-fold inhibition of expression of ORF50, a viral gene critical for the onset of lytic replication. Also, we demonstrate that such a profound inhibitory effect of gB on the lytic cycle of virus replication is by repressing the ability of Egr-1 (early growth response-1) to bind and activate the ORF50 promoter. In general, virus-encoded late stage structural proteins, such as gB, are said to play major roles in virus entry and egress. The present report provides initial evidence supporting a role for membrane-associated gB expressed in a minimal number of cells to promote virus latency. These findings may have ramifications leading to a better understanding of the role of virus-encoded structural proteins not only in KSHV-related diseases but also in other viruses causing latent infections.  相似文献   
72.
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites.  相似文献   
73.
The molecular mechanisms underlying reproductive aging and menopausal age in female mammals are poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) is a central controller of cell growth and proliferation. To determine whether mTORC1 signaling in oocytes plays a direct role in physiological follicular development and fertility in female mice, we conditionally deleted the specific and essential mTORC1 component Rptor (regulatory-associated protein of mTORC1) from the oocytes of primordial follicles by using transgenic mice expressing growth differentiation factor 9 (Gdf-9) promoter-mediated Cre recombinase. We provide in vivo evidence that deletion of Rptor in the oocytes of both primordial and further-developed follicles leads to the loss of mTORC1 signaling in oocytes as indicated by loss of phosphorylation of S6K1 and 4e-bp1 at T389 and S65, respectively. However, the follicular development and fertility of mice lacking Rptor in oocytes were not affected. Mechanistically, the loss of mTORC1 signaling in Rptor-deleted mouse oocytes led to the elevation of phosphatidylinositol 3-kinase (PI3K) signaling that maintained normal follicular development and fertility. Therefore, this study shows that loss of mTORC1 signaling in oocytes triggers a compensatory activation of the PI3K signaling cascade that maintains normal ovarian follicular development and fertility.  相似文献   
74.

Purpose

End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis.

Methods

End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score.

Measurements and Main Results

There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice.

Conclusions

In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis.  相似文献   
75.
Molecular modeling study shows that conformational flexibility of acyclic nature of TFV provides energetically indistinguishable multiple conformations, which do not experience the cross-resistance conferred by mutant RTs. TFV-DP is located far away from the bulky side chain of Val184 in M184V RT and tenofovir is readily translocated without steric hindrance with Asp185 after incorporation into the growing primer chain complexed with AZT-resistant RT.  相似文献   
76.
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.  相似文献   
77.
Dysferlin deficiency compromises the repair of injured muscle, but the underlying cellular mechanism remains elusive. To study this phenomenon, we have developed mouse and human myoblast models for dysferlinopathy. These dysferlinopathic myoblasts undergo normal differentiation but have a deficit in their ability to repair focal injury to their cell membrane. Imaging cells undergoing repair showed that dysferlin-deficit decreased the number of lysosomes present at the cell membrane, resulting in a delay and reduction in injury-triggered lysosomal exocytosis. We find repair of injured cells does not involve formation of intracellular membrane patch through lysosome–lysosome fusion; instead, individual lysosomes fuse with the injured cell membrane, releasing acid sphingomyelinase (ASM). ASM secretion was reduced in injured dysferlinopathic cells, and acute treatment with sphingomyelinase restored the repair ability of dysferlinopathic myoblasts and myofibers. Our results provide the mechanism for dysferlin-mediated repair of skeletal muscle sarcolemma and identify ASM as a potential therapy for dysferlinopathy.Dysferlinopathy is a progressive muscle wasting disease, which is classified as limb-girdle muscular dystrophy type 2B (LGMD2B) or Miyoshi muscular dystrophy 1, based on its muscle involvement.1, 2 Dysferlin deficit leads to altered vesicle formation and trafficking,3, 4 poor repair of injured cell membranes,5, 6 and increased muscle inflammation.7, 8 Dysferlin contains C2 domains that are found in Ca2+-dependent membrane fusion proteins such as synaptotagmins.9 Thus, dysferlin is thought to regulate muscle function by regulating vesicle trafficking and fusion.10, 11, 12, 13 Dysferlin deficiency has also been implicated in conflicting reports regarding the fusion ability of dysferlinopathic myoblasts.4, 14, 15, 16 With such diverse roles for dysferlin, the mechanism through which dysferlin deficiency results in muscle pathology is unresolved. As skeletal muscle-specific re-expression of dysferlin rescues all dysferlinopathic pathologies,17, 18 myofiber repair has been suggested to be the unifying deficit underlying muscle pathology in dysferlinopathy.19 Repair of injured cell membranes requires subcellular compartments, which in mammalian cells include lysosomes,11 enlargeosomes,20 caveolae,21 dysferlin-containing vesicles,5 and mitochondria.22Cells from muscular dystrophy patients that have normal dysferlin expression exhibit normal lysosome and enlargeosome exocytosis.23 However, dysferlinopathic muscle cells exhibit enlarged LAMP2-positive lysosomes, reduced fusion of early endosomes, altered expression of proteins regulating late endosome/lysosome fusion, and reduced injury-triggered cell-surface levels of LAMP1.4, 11, 12 In non-muscle cells, lack of dysferlin reduces lysosomal exocytosis.24 These findings implicate lysosomes in dysferlin-mediated muscle cell membrane repair. In one model for lysosome-mediated cell membrane repair, Ca2+ triggers vesicle–vesicle fusion near the site of injury, forming ‘membrane patch'', which fuses to repair the wounded cell membrane.25, 26, 27, 28 In another model, lysosome exocytosis following cell membrane injury by pore-forming toxins leads to secretion of the lysosomal enzyme acid sphingomyelinase (ASM), which causes endocytosis of pores in the damaged cell membranes.21, 29, 30 Both these models have been suggested to be involved in the repair of injured muscle cells.21, 28To examine the muscle cell pathology in dysferlinopathy, we have developed dysferlinopathic mouse and human models. Use of these models shows that a lack of dysferlin does not alter myogenic differentiation but causes poor repair of even undifferentiated muscle cells. We show that dysferlin is required for tethering lysosomes to the cell membrane. Fewer lysosomes at the cell membrane in dysferlinopathic cells results in slow and reduced lysosome exocytosis following injury. This reduction in exocytosis reduces injury-triggered ASM secretion, which is responsible for the poor repair of dysferlinopathic muscle cells. Extracellular sphingomyelinase (SM) fully rescues the repair deficit in dysferlinopathic cells and mouse myofibers, offering a potential drug-based therapy for dysferlinopathy.  相似文献   
78.
Genetic Analyses of Casuarinas Using ISSR and FISSR Markers   总被引:2,自引:0,他引:2  
Inter simple sequence repeat polymerase chain reaction (ISSR-PCR) was used for the genetic analysis of the six species of Allocasuarina, five species of Casuarina and 12 superior performing selections of C. equisetifolia L. We also fingerprinted C. equisetifolia L. selections using Fluorescent-ISSR-PCR (FISSR-PCR), an improvised ISSR-PCR assay. The ISSR analysis provided information on the frequency of various simple sequence repeats in the casuarina genome. The di-nucleotide repeats were more common, among which (CA)n and its complementary nucleotide (GT),, repeat motifs amplified relatively higher number of bands with an average of 6.0+/-3.5 and 6.3+/-1.8 respectively. Eleven species of casuarinas were amplified with 10 primers anchored either at 5' or 3' end. A total of 253 PCR products were obtained and all were polymorphic, out of which 48 were specific to Allocasuarina and 36 were specific to Casuarina genus. Genetic similarity among the species was 0.251. A UPGMA dendrogram grouped all the Casuarina species together. The 12 superior performing selections of C. equisetifolia L. produced 57 polymorphic ISSR markers while the FISSR assay revealed 105 polymorphic markers. The primer CRR(ATT)4 distinguished all the selections. DNA profiles obtained with ISSR and FISSR assays would serve as a reference library for the establishment of clonal identity in casuarinas.  相似文献   
79.
80.
The challenge for -omics research is to tackle the problem of fragmentation of knowledge by integrating several sources of heterogeneous information into a coherent entity. It is widely recognized that successful data integration is one of the keys to improve productivity for stored data. Through proper data integration tools and algorithms, researchers may correlate relationships that enable them to make better and faster decisions. The need for data integration is essential for present ‐omics community, because ‐omics data is currently spread world wide in wide variety of formats. These formats can be integrated and migrated across platforms through different techniques and one of the important techniques often used is XML. XML is used to provide a document markup language that is easier to learn, retrieve, store and transmit. It is semantically richer than HTML. Here, we describe bio warehousing, database federation, controlled vocabularies and highlighting the XML application to store, migrate and validate -omics data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号