首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   45篇
  560篇
  2023年   2篇
  2022年   3篇
  2021年   16篇
  2020年   8篇
  2019年   7篇
  2018年   17篇
  2017年   12篇
  2016年   7篇
  2015年   22篇
  2014年   25篇
  2013年   36篇
  2012年   39篇
  2011年   37篇
  2010年   27篇
  2009年   20篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   21篇
  2004年   25篇
  2003年   14篇
  2002年   18篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1984年   3篇
  1982年   3篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
1.
Three previously uncharacterized, nongenetic urease isozymes have been analyzed by sucrose density gradient sedimentation, gel electrophoresis, and chemical reactivity. The full complement of isozymes could be reliably generated by choosing appropriate levels of NaCl, pH, and ethylene glycol, and was stable for several days in dilute solution. The three forms of interest were found to be quaternary isomers of other isozymes, but differed from them qualitatively in their bonding sites, with disulfide bonds being substituted for noncovalent bonds. The separation of these isomer-pairs during sedimentation and electrophoresis cannot be readily explained by differences in size or charge, but must rather arise from a difference in shape. A simple two-dimensional model can provide the appropriate molecular architecture to satisfy these requirements: Only one of the two half-units in each α-urease molecule undergoes disulfide bonding during polymerization, and it does so with two adjacent molecules, thus producing asymmetric polymers from symmetric starting components.  相似文献   
2.
Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.  相似文献   
3.
R. Nagarajan  K. Thiyagesan 《Ibis》1996,138(4):710-721
The water and mud characteristics of the six types of wetlands in Pichavaram were compared in order to determine whether the habitat of waterbird species was characterized by them. Waterbird species richness was most influenced by mud phosphorus levels. Variation in water pH was the principal factor that determined waterbird diversity. The water level mainly determined the density of waterbirds. Levels of pH and nitrites in the water also appeared to influence significant variations in waterbird diversity and density, respectively. Bottom substrate variables, viz. pH and phosphorus levels, were also significantly correlated with the density and richness of waterbirds, respectively. Water quality factors, viz. pH and nitrite and mud pH and phosphorus, were correlated with the abundance, while water depth was correlated with the accessibility of prey to the birds.  相似文献   
4.
5.
Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.  相似文献   
6.
Context: The histamine plays a decisive role in acute and chronic inflammatory responses and is regulated through its four types of distinct receptors designated from H1 to H4. Recently histamine 4 receptor (H4R) antagonists have been reported to possess various pharmacological effects against various allergic diseases.

Objective: To investigate the inhibitory effect of N-(2-aminoethyl)-5-chloro-1H-indol-2-carboxamide (Compound A) and 5-chloro-2-(piperazin-1-ylmethyl)-1H-benzimidazole (Compound L) on H4R-mediated calcium mobilization, cytokine IL-13 production, ERK1/2, Akt and NF-κB activation in human mastocytoma cells-1 (HMC-1).

Materials and methods: Compounds A and L were synthesized chemically and their inhibitory effect on intracellular calcium release was analyzed by Fluo-4 calcium assay, cytokine measurement through ELISA and activation of signaling molecules by western blot.

Results: Pre-treatment with compounds A and L significantly reduced the H4R-mediated intracellular calcium release. Histamine and 4-methylhistamine (4-MH) induced Th2 cytokine IL-13 production in HMC-1 cells, was inhibited by compound A (77.61%, 74.25% at 1?μM concentration) and compound L (79.63%, 81.70% at 1?μM concentration). Furthermore, histamine induced the phosphorylation of ERK1/2, Akt and NF-κB was suppressed by compounds A and L at varying levels, ERK1/2 (88%, 86%), Akt (88%, 89%) and NF-κB (89%, 87%) in HMC-1 cells.

Discussion and conclusions: Taken together these data demonstrate that compound A and compound L may block H4R-mediated downstream signaling events.  相似文献   
7.
Activation of G-protein-coupled receptors (GPCRs) is initiated by conformational changes in the transmembrane (TM) helices and the intra- and extracellular loops induced by ligand binding. Understanding the conformational changes in GPCRs leading to activation is imperative in deciphering the role of these receptors in the pathology of diseases. Since the crystal structures of activated GPCRs are not yet available, computational methods and biophysical techniques have been used to predict the structures of GPCR active states. We have recently applied the computational method LITiCon to understand the ligand-induced conformational changes in β2-adrenergic receptor by ligands of varied efficacies. Here we report a study of the conformational changes associated with the activation of bovine rhodopsin for which the crystal structure of the inactive state is known. Starting from the inactive (dark) state, we have predicted the TM conformational changes that are induced by the isomerization of 11-cis retinal to all-trans retinal leading to the fully activated state, metarhodopsin II. The predicted active state of rhodopsin satisfies all of the 30 known experimental distance constraints. The predicted model also correlates well with the experimentally observed conformational switches in rhodopsin and other class A GPCRs, namely, the breaking of the ionic lock between R1353.50 at the intracellular end of TM3 (part of the DRY motif) and E2476.30 on TM6, and the rotamer toggle switch on W2656.48 on TM6. We observe that the toggling of the W2656.48 rotamer modulates the bend angle of TM6 around the conserved proline. The rotamer toggling is facilitated by the formation of a water wire connecting S2987.45, W2656.48 and H2115.46. As a result, the intracellular ends of TMs 5 and 6 move outward from the protein core, causing large conformational changes at the cytoplasmic interface. The predicted outward movements of TM5 and TM6 are in agreement with the recently published crystal structure of opsin, which is proposed to be close to the active-state structure. In the predicted active state, several residues in the intracellular loops, such as R69, V1393.54, T229, Q237, Q239, S240, T243 and V2506.33, become more water exposed compared to the inactive state. These residues may be involved in mediating the conformational signal from the receptor to the G protein. From mutagenesis studies, some of these residues, such as V1393.54, T229 and V2506.33, are already implicated in G-protein activation. The predicted active state also leads to the formation of new stabilizing interhelical hydrogen-bond contacts, such as those between W2656.48 and H2115.46 and E1223.37 and C1674.56. These hydrogen-bond contacts serve as potential conformational switches offering new opportunities for future experimental investigations. The calculated retinal binding energy surface shows that binding of an agonist makes the receptor dynamic and flexible and accessible to many conformations, while binding of an inverse agonist traps the receptor in the inactive state and makes the other conformations inaccessible.  相似文献   
8.
The plasmid hik31 operon (P3, slr6039‐slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon and nitrogen sources partly alleviated the defects of the mutant in the dark. Electron micrographs of the mutant revealed larger cells with division defects, glycogen limitation, lack of carboxysomes, deteriorated thylakoids and accumulation of polyhydroxybutyrate and cyanophycin. A microarray experiment over two days of growth in light‐dark plus glucose revealed downregulation of several photosynthesis, amino acid biosynthesis, energy metabolism genes; and an upregulation of cell envelope and transport and binding genes in the mutant. ΔP3 had an imbalance in carbon and nitrogen levels and many sugar catabolic and cell division genes were negatively affected after the first dark period. The mutant suffered from oxidative and osmotic stress, macronutrient limitation, and an energy deficit. Therefore, the P3 operon is an important regulator of central metabolism and cell division in the dark.  相似文献   
9.
The effect of an inert small molecule osmolyte, trimethyl amine N-oxide (TMAO), upon the conformational equilibria of Escherichia coli adenylate kinase was studied using time-resolved FRET. The relative populations of open and closed clefts between the LID and the CORE domains were measured as functions of the concentrations of the substrate ATP over the concentration range 0–18 mM and TMAO over the concentration range 0–4 M. A model was constructed according to which the enzyme exists in equilibrium among four conformational states, corresponding to combinations of open and closed conformations of the LID-CORE and AMP-CORE clefts. ATP is assumed to bind only to those conformations with the closed LID-CORE cleft, and TMAO is assumed to be differentially excluded as a hard spherical particle from each of the four conformations in accordance with calculations based upon x-ray crystallographic structures. This model was found to describe quantitatively the dependence of the fraction of the closed LID-CORE cleft upon the concentrations of both ATP and TMAO over the entire range of concentrations with just five undetermined parameters.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号