首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   45篇
  571篇
  2023年   2篇
  2022年   3篇
  2021年   16篇
  2020年   8篇
  2019年   8篇
  2018年   17篇
  2017年   12篇
  2016年   8篇
  2015年   23篇
  2014年   27篇
  2013年   40篇
  2012年   41篇
  2011年   37篇
  2010年   27篇
  2009年   20篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   21篇
  2004年   25篇
  2003年   14篇
  2002年   18篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1984年   3篇
  1982年   3篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有571条查询结果,搜索用时 15 毫秒
351.
Recognition of an RNA loop by another RNA loop is involved in several biological functions. The dimerization of two copies of the HIV-1 genomic RNA is thought to be involved in several steps of the retroviral life cycle. It has been shown that the dimerization of the two HIV-1 RNA genomes is initiated by the so called kissing loop. The 9nt kissing loop consists of a palindromic 6nt sequence that forms Watson-Crick base-pairs at the kissing site in HIV-1. We report the results of our molecular modeling and dynamics studies on two major subtype isolates (MAL and LAI) of HIV-1 kissing loop structures. From our modeling studies, we conclude that the conformation of the loop in the monomer might be closer to the A-RNA-like conformation in order to form an initial kissing structure. This is achieved by the stacking interactions of the bases at the 3' end of the loop and by the intramolecular tertiary interactions of a single linker nucleotide. We discuss the effect of the loop size and the structural limitations on the formation of kissing loop structures. Also, we propose a possible mechanism to convert the kissing loop structure to a stable extended duplex structure without unwinding the stems.  相似文献   
352.
Genetic analysis of kernel hardness in bread wheat using PCR-based markers   总被引:4,自引:0,他引:4  
In wheat, kernel hardness is a complex genetic trait involving various directly and indirectly contributing components such as kernel hardness per se, protein content, hectolitre weight and 1,000-kernel weight. In an attempt to identify DNA markers associated with this trait, 100 recombinant inbred lines (RILs) derived from a cross between a hard grain land-race, NP4, and a soft grain variety, HB 208, were screened with 100 ISSR and 360 RAPD primers. Eighteen markers were assigned to seven linkage groups covering 223.6 cM whereas 11 markers remained unlinked. A multiple-marker model explained the percentage of phenotypic variation for kernel hardness as 20.6%, whereas that for protein content, hectolitre weight and 1,000-kernel weight was 18.8%, 13.5% and 12.1%, respectively. Our results indicate that phenotypic expression of kernel hardness is controlled by many QTLs and is interdependent on various related traits. Received: 25 July 2000 / Accepted: 24 November 2000  相似文献   
353.
354.
Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD approach has the potential to create personalized tools for the diagnosis, prognosis, and treatment of diseases. The methods reviewed here generated a considerable amount of valuable data, but also the need for further validation.  相似文献   
355.
Magnetic seed treatment is one of the physical pre-sowing seed treatments to enhance the performance of crop plants. In our earlier experiment, we found significant increase in germination and vigour characteristics of maize (Zea mays L.) seeds subjected to magnetic fields. Among various combinations of magnetic field (MF) strength and duration, best results were obtained with MF of 100 mT for 2 h and 200 mT for 1 h exposure. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions. Thus, in the present study, changes in water uptake during imbibition and its distribution and activities of germinating enzymes during germination were investigated in maize seeds exposed to static magnetic fields of 100 and 200 mT for 2 and 1 h respectively by nuclear magnetic resonance (NMR) spectroscopy. The magnetically-exposed seed showed higher water uptake in phase II and III than unexposed seed. The longitudinal relaxation time T1 of seed water showed significantly higher values and hence greater molecular mobility of cellular water in magnetically-exposed seeds as compared to unexposed. Component analysis of T2 relaxation times revealed the early appearance of hydration water with least mobility and higher values of relaxation times of cytoplasmic bulk water and hydration water in magnetically-exposed over unexposed seeds. Activities of alpha-amylase, dehydorgenase and protease during germination were higher in magnetically-exposed seeds as compared to unexposed. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions.  相似文献   
356.
To contribute to the understanding of membrane protein function upon application of pressure, we investigated the influence of hydrostatic pressure on the conformational order and phase behavior of the multidrug transporter LmrA in biomembrane systems. To this end, the membrane protein was reconstituted into various lipid bilayer systems of different chain length, conformation, phase state and heterogeneity, including raft model mixtures as well as some natural lipid extracts. In the first step, we determined the temperature stability of the protein itself and verified its reconstitution into the lipid bilayer systems using CD spectroscopic and AFM measurements, respectively. Then, to yield information on the temperature and pressure dependent conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined, which report on the conformation and phase state of the lipid bilayer system. The temperature-dependent measurements were carried out in the temperature range 5-70 °C, and the pressure dependent measurements were performed in the range 1-200 MPa. The data show that the effect of the LmrA reconstitution on the conformation and phase state of the lipid matrix depends on the fluidity and hydrophobic matching conditions of the lipid system. The effect is most pronounced for fluid DMPC and DMPC with low cholesterol levels, but minor for longer-chain fluid phospholipids such as DOPC and model raft mixtures such as DOPC/DPPC/cholesterol. The latter have the additional advantage of using lipid sorting to avoid substantial hydrophobic mismatch. Notably, the most drastic effect was observed for the neutral/glycolipid natural lipid mixture. In this case, the impact of LmrA incorporation on the increase of the conformational order of the lipid membrane was most pronounced. As a consequence, the membrane reaches a mechanical stability which makes it very insensitive to application of pressures as high as 200 MPa. The results are correlated with the functional properties of LmrA in these various lipid environments and upon application of high hydrostatic pressure and are discussed in the context of other work on pressure effects on membrane protein systems.  相似文献   
357.
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2-emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented.  相似文献   
358.
N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals.  相似文献   
359.
The effect of clofibrate on rat liver enzymes and metabolites was compared with that produced by partial hepatectomy and an extrahepatic tumor. Clofibrate administration produced decrease in gamma-glutamyltranspeptidase (GGT) activity with concomitant increase in glutathione concentration. The drug was able to exert its GGT-lowering effect even when fed to tumor-bearing animals. Presence of an extrahepatic neoplasm as well as administration of clofibrate resulted in marked decrease in activities of hepatic arginase and ornithine transaminase. Administration of clofibrate to the tumor-bearing rat produced a further decrease in activities of these two enzymes. These results suggest that clofibrate causes hepatic dedifferentiation and simulates an extrahepatic tumor. However, clofibrate did not induce any significant increase in polyamine profile unlike the other two experimental conditions.  相似文献   
360.
Total and lipoprotein cholesterol in serum have been determined in patients with leukemia and lymphoma. Untreated patients were hypocholesterolemic with reduced lipoprotein cholesterol content. On successful chemotherapy most of the patients showed near normal total cholesterol levels with a subsequent increase in LDL cholesterol content. A rapid, sensitive and inexpensive method is reported using agarose electrophoresis and quantitation of cholesterol by Liebermann-Burchard reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号