首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   16篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   16篇
  2014年   10篇
  2013年   24篇
  2012年   28篇
  2011年   18篇
  2010年   27篇
  2009年   23篇
  2008年   26篇
  2007年   14篇
  2006年   19篇
  2005年   15篇
  2004年   10篇
  2003年   10篇
  2002年   14篇
  2001年   11篇
  2000年   3篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1981年   6篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
101.
The amino terminal 1-18 domain of dermaseptin s is an important determinant of its structure as well as the antibacterial activity. A thorough investigation on the structure of the 18-residue peptide (D18) and its binding to model membranes in presence of salt and denaturant guanidinium chloride has been carried out. In presence of salt, there is an increase in the fraction of peptide molecules in helical conformation. In presence of the denaturant, D18 is unordered, but addition of the structure-promoting solvent trifluoroethanol results in a transition to the helical conformation. In presence of denaturant, the peptide is unordered, but binding to lipid vesicles is not abolished. Investigation of model membrane permeabilizing ability of the peptide in solutions containing various proportions of sodium chloride and guanidinium chloride indicates that vesicle permeabilization parallels extent of binding. The peptide thus binds to lipid vesicles in an unfolded state. Since the peptide has propensity to fold into a helical conformation, lipid induced transition to a helical structure occurs, followed by membrane permeabilization as a result of pore formation.  相似文献   
102.
Cathepsin B promotes both motility and invasiveness of oral carcinoma cells   总被引:7,自引:0,他引:7  
We previously demonstrated that overexpression of cathepsin B (CB) protease in oral squamous cell carcinomas correlated positively with advanced tumor stage and poor histologic malignancy grade. Here we examined whether CB contributes to the invasiveness of oral carcinoma cells. For RNA-mediated inhibition, two ribozymes that target CB mRNA were designed and stably expressed in the oral squamous cell carcinoma cell line 1386Tu. Both ribozymes diminished expression of CB mRNA, protein, and activity, without affecting cathepsin D or beta-actin, as determined by quantitative real-time PCR, Western blots, and protease activity assays. Matrigel invasion assays showed that the invasiveness of the cells was significantly reduced by the expressed ribozymes and, surprisingly, the motilities of the ribozyme-transfected cells were also diminished. Our results document a direct role for CB in promoting oral cancer spread and invasion, and open the possibility of controlling oral carcinoma malignancy and metastasis by targeting CB with RNA inhibitor strategies.  相似文献   
103.
T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.  相似文献   
104.

Background

In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function.

Method

This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors.

Results

This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV1 (p < .05), FEV1 % (p < .01), PEFR (p < .05) and FEF25–75 (p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families.

Conclusion

This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function.  相似文献   
105.
Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina   总被引:5,自引:0,他引:5  
Four broad-spectrum, 11 and 12 residue, novel antimicrobial peptides have been isolated from the adrenaline-stimulated skin secretions of the Indian frog Rana tigerina. Sequences of these peptides have been determined by automated Edman degradation, by mass spectral analysis and confirmed by chemical synthesis. These peptides, which we have named as tigerinins, are characterized by an intramolecular disulfide bridge between two cysteine residues forming a nonapeptide ring. This feature is not found in other amphibian peptides. Conformational analysis indicate that the peptides tend to form beta-turn structures. The peptides are cationic and exert their activity by permeabilizing bacterial membranes. Tigerinins represent the smallest, nonhelical, cationic antimicrobial peptides from amphibians.  相似文献   
106.
Modulation of the immune system by genetically modified immunological effector cells is of potential therapeutic value in the treatment of malignancies. Interleukin-2 (IL-2) is a crucial cytokine which induces potent antitumor response. Cytokine-induced killer cells (CIK) have been described as highly efficient cytotoxic effector cells capable of lysing tumor cell targets and are capable of recognizing these cells in a non-MHC restricted fashion. Dendritic cells (DC) are the major antigen presenting cells. This study evaluated the antitumor effect of CIK cells which were non-virally transfected with IL-2 and co-cultured with pulsed and unpulsed DC. Human CIK cells generated from peripheral blood were transfected in vitro with plasmid encoding for the human IL-2. Transfection involved a combination of electrical parameters and a specific solution to deliver plasmid directly to the cell nucleus by using the Nucleofector(R) electroporation system. Nucleofection resulted in the production of IL-2 with a mean of 478.5 pg/106 cells (range of 107.6-1079.3 pg /106 cells/24 h) compared to mock transfected CIK cells (31 pg/106 cells) (P = 0.05). After co-culturing with DC their functional ability was assessed in vitro by a cytotoxicity assay. On comparison with non-transfected CIK cells co-cultured with DCs (36.5 +/- 5.3 %), transfected CIK cells co-cultured with DC had a significantly higher lytic activity of 58.5 +/- 3.2% (P = 0.03) against Dan G cells, a human pancreatic carcinoma cell line.  相似文献   
107.
Covalent modification with fatty acids is observed in several proteins that play crucial roles in cellular physiology. In this paper, a convenient method for the generation of multiple fatty acylated synthetic peptides is described. Peptides were synthesized using solid phase procedures with fluorenylmethoxycarbonyl a-amino protected amino acids. Acetamidomethyl protected cysteines were employed. The thiol protecting group was selectively deprotected and acylation was carried out on the resin-bound peptides. The strategy described in this report is applicable to any peptide sequence.  相似文献   
108.
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.  相似文献   
109.
The Aβ(16–22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16–22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16–22) sequence which has FF at the 19th and 20th positions would be a good model to investigate peptide self-assembly in the context of aromatic interactions. In this study, self-assembly of Aβ(16–22) and its aromatic analogs obtained by replacement of F19, F20 or both by Y or W was examined after dissolution in fluorinated alcohols and their aqueous mixtures in solvent cluster forming conditions. The results indicate that the presence of aromatic residues Y and W and their position in the sequence plays an important role in self-assembly. We observe the formation of amyloid fibrils and other self-assembled structures such as spheres, rings and beads. Our results indicate that 20% HFIP is more favourable for amyloid fibril formation as compared to 20% TFE, when F is replaced with Y or W. The dissolution of peptides in DMSO followed by evaporation of solvent and dissolution in water appears to greatly influence peptide conformation, morphology and cross-β content of self-assembled structures. Our study shows that positioning of aromatic residues F, Y and W have an important role in directing self-assembly of the peptides.  相似文献   
110.
Despite progress in mass spectrometry (MS)-based phosphoproteomics, large-scale in vivo analyses remain challenging. Here we report a 'spike-in' stable-isotope labeling with amino acids in cell culture (SILAC) methodology using standards derived from labeled mouse liver cell lines, using which we analyzed insulin signaling. With this approach we identified 15,000 phosphosites and quantitatively compared 10,000 sites in response to insulin treatment, creating a very large, accurately quantified in vivo phosphoproteome dataset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号