首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   26篇
  国内免费   4篇
  347篇
  2024年   1篇
  2023年   9篇
  2022年   14篇
  2021年   17篇
  2020年   9篇
  2019年   9篇
  2018年   18篇
  2017年   14篇
  2016年   23篇
  2015年   15篇
  2014年   28篇
  2013年   28篇
  2012年   22篇
  2011年   31篇
  2010年   12篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有347条查询结果,搜索用时 3 毫秒
251.
Replication of human cytomegalovirus is controlled by a vigorous CD8 T cell response. The persistent nature of infection is believed to periodically stimulate T cell responses resulting in considerable expansions of virus-specific CD8 T cells over time. In this study, we describe the magnitude and breadth of CD8 T cell responses against the immunodominant viral Ags, IE-1 and pp65, in acute and long-term infection using the IFN-gamma ELISPOT assay. Simultaneously, we have identified several novel MHC class I restricted CD8 T cell epitopes. Acute phase responses in immunocompetent donors appear to be extremely focused as early as 1 week post diagnosis with dominant peptide-specific responses observed against both proteins. These dominant responses remain detectable at all later time points over a 4-year follow-up. Interestingly the IE-1 responses show an increase over time whereas the pp65 responses do not, which contrasts with data showing that responses against both Ags are elevated in elderly individuals. We also observe the rapid emergence of an effector memory phenotype for virus-specific CD8 T cells as observed in persistent infection. Over time the revertant CD45RA(pos) effector cell population is also expanded, and this is more evident in the preferentially expanded IE-1 responses. We postulate that periodic low-level virus reactivation after the acute infection phase preferentially stimulates these responses whereas pp65-specific T cell expansions probably occur during the infrequent episodes of lytic viral replication or secondary infection.  相似文献   
252.

Increased demand of enzymes for industrial use has led the scientists towards protein engineering techniques. In different protein engineering strategies, rational approach has emerged as the most efficient method utilizing bioinformatics tools to produce enzymes with desired reaction kinetics; physiochemical (temperature, pH, half life, etc) and biological (selectivity, specificity, etc.) characteristics. Xylanase is one of the widely used enzymes in paper and food industry to degrade xylan component present in plant pulp. In this study endo 1,4-β-xylanase (Xyl-11A) from Bacillus halodurans C-125 was cloned in pET-22b (+) vector and expressed in Escherichia coli BL21 (DE3) expression strain. The enzyme had Michaelis constant Km of 1.32 mg ml?1 birchwoodxylan (soluble form) and maximum reaction velocity (Vmax) 73.53 mmol min?1 mg?1 with an optimum temperature of 75 °C and pH 9.0. The thermostability analysis showed that enzyme retained more than 80% of its residual activity when incubated at 75 °C for 2 h. In addition, to increase Xyl-11A thermostability, an in-silico analysis was performedto identify the hot spot amino acid residues. Consensus-based amino acid substitution was applied to evaluate multiple sequence alignment of homologs and identified 20 amino acids positions by following Jensen-Shnnon Divergence method. 3D models of 20 selected mutants were analyzed for conformational transition in protein structures by using NMSim server. Two selected mutants T6K and I17M of Xyl-11A retained 40, 60% residual activity respectively, at 85 °C for 120 min as compared to wild type enzyme which retained 37% initial activity under same conditions, confirming the enhanced thermostability of mutants. The present study showed a good approach for the identification of promising amino acid residues responsible for enhancing the thermostability of enzymes of industrial importance.

  相似文献   
253.
Khan  Israr  Wei  Junshu  Li  Anping  Liu  Zhirong  Yang  Pingrong  Jing  Yaping  Chen  Xinjun  Zhao  Tang  Bai  Yanrui  Zha  Lajia  Li  Chenhui  Ullah  Naeem  Che  Tuanjie  Zhang  Chunjiang 《International microbiology》2022,25(3):587-603
International Microbiology - Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have...  相似文献   
254.
A very interesting survey was performed to measure the distribution of invasive Parthenium (Parthenium hysterophorus L.) weed in the University Campus, Peshawar, the capital city of Khyber Pakhtunkhwa province. The University Campus comprised on; The University of Peshawar, Islamia College University, The University of Agriculture Peshawar, Pakistan Forest Institute and the New Developmental Research Farm. In these selected areas Parthenium weed distribution was measured in particular the academic, residential and research farm. Moreover, the survey also investigated the impact of parthenium weed upon native weeds flora inside the University campus. A 1m2 quadrat was used to collect the data. During the survey, a total of 32 weeds species were recorded belonging to 18 different families and 32 genera, the life cycle of 23 weeds were annual while 9 weeds have a perennial. The data were recorded on absolute density (%), relative density (%), absolute frequency (%), relative frequency (%) and importance values (%) of parthenium weed and others flora. The collected data show that parthenium weed was the most dominant species having 76.8 m?2 plants density in the NDF and (32.0 m?2) at Islamia College University. However, the highest frequency (100%) of Parthenium was observed for The University of Agriculture, while minimum (80%) occurred in the Agronomy field. A More, the relative frequency of Parthenium was maximum (25%) in Islamia College; whereas, it's minimum (12.9%) at Agronomy field. Finally, the Importance Value of Parthenium indicates the highest (45.98%) at Dairy Farm followed by (40.33%) at the Horticulture field's area. In short, the Parthenium weed becomes more problematic and replaces all the native flora in the non-crop area specially Dicanthium annulatum L. a native grass species on the ridges of the field being replaced by parthenium. Due to no proper management and high growth rate, nowadays it becomes like a superweed in the KPK and especially in Pakistan. So, the management of Parthenium weed requires the call attention from the Govt. policymaker and proper quarantine inspection to conserve the native flora and field crops to get maximum crop yield.  相似文献   
255.
Mosquitoes spread deadly infections around the world. Since decades Bacillus thuringiensis (Bt) δ-endotoxins have been used successfully as a biopesticide for controlling mosquito larvae. However, over a few years, mosquito larvae have evolved tolerance against Bt δ-endotoxins, rendering them ineffective for mosquito control. Such a problem entails the development of improved toxins with enhanced toxicity, affinity towards a wide range of mosquito receptors and ability to overcome or delay the resistance buildup. In this study, using in silico tools, we aimed to design a fusion protein by fusing active region of Bt subsp. jegathesan Cry11Ba protein with Aedes aegypti TMOF (trypsin modulating oostatic factor). Using computational study, the fusion protein was validated and its mosquitocidal potential was determined through molecular docking against cadherin and aminopeptidase N midgut receptors of Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Molecular docking revealed that from Cry11Ba-TMOF fusion protein, domain II amino acids of Cry11Ba protein showed hydrogen bond interactions with cadherin and aminopeptidase N receptors of the targeted mosquitoes. These results conclude that Cry11Ba-TMOF fusion protein has a strong affinity for the receptors of Ae.aegypti, An.gambiae and Cx.quinquefasciatus. Thus the designed fusion protein can be used as a potent mosquitocidal agent for the control of targeted mosquitoes.  相似文献   
256.
Anopheles subpictus s.l. Grassi (Diptera: Culicidae) is a malaria vector in South Asia, where insecticides are the mainstay for vector control interventions. Information on any variation in metabolic enzyme levels in mosquitoes is helpful with respect to adapting alternative strategies for vector control. The scarce data on the biochemical basis of insecticide resistance in malaria vectors of Pakistan limit the available information for vector control interventions within the country. The insecticide susceptibility status and its biochemical basis against dichlorodiphenyltrichloroethane (DDT) (4%), deltamethrin (0.05%) and permethrin (0.75%) in An. subpictus s.l. collected from all Tehsils of district Kasur were evaluated. For this purpose, a World Health Organization susceptibility bioassay was performed followed by the detection of altered metabolic enzyme activity using biochemical assays. Similarly, a significant difference in knock‐down effect was observed among field collected and susceptible strain against all insecticides 24 h post exposure. The overall mean mortality rates of DDT, deltamethrin and permethrin were 27.86% [95% confidence interval (CI) = 29.65–26.06], 44.89% (95% CI = 46.23–43.54) and 78.82% (95% CI = 80.16–77.47), respectively. The biochemical assays revealed an elevated level of metabolic enzymes in the field population. The results provide evidence of resistance against organochlorine and pyrethroid groups in a field population of An. subpictus s.l. from district Kasur mediated by multiple metabolic mechanisms, including acetylcholinesterases, esterases, cytochrome P450 and glutathione S‐transferases.  相似文献   
257.
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence‐related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant–plant interactions and plant–insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their ‘green note’ odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.  相似文献   
258.
Recently nano-materials are widely used but they have shown contrasting effects on human and plant life. Keeping in view the contrasting results, the present study has evaluated plant growth response, antioxidant system activity and photosynthetic apparatus physiological and ultrastructural changes in Brassica napus L. plants grown under a wide range (0, 500, 2500, 4000 mg/l) of nano-TiO2 in a pot experiment. Nano-TiO2 has significantly improved the morphological and physiological indices of oilseed rape plants under our experimental conditions. All the parameters i-e morphological (root length, plant height, fresh biomass), physiological (photosynthetic gas exchange, chlorophyll content, nitrate reductase activity) and antioxidant system (Superoxide dismutase, SOD; Guaiacol peroxidase, POD; Catalase, CAT) recorded have shown improvement in their performance by following nano-TiO2 dose-dependent manner. No significant chloroplast ultra-structural changes were observed. Transmission electron microscopic images have shown that intact & typical grana and stroma thylakoid membranes were in the chloroplast, which suggest that nano-TiO2 has not induced the stressful environment within chloroplast. Finally, it is suggested that, nano-TiO2 have growth promoting effect on oilseed rape plants.  相似文献   
259.
Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P < 0.05). Skeletal muscle biopsy samples from the vastus lateralis revealed a training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P < 0.05). However, the increase in cytochrome c oxidase subunits II and IV and GLUT-4 protein concentration was greater following single- than double-leg cycling (P < 0.05). Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.  相似文献   
260.

Purpose

To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration.

Methods

A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls.

Results

We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population.

Conclusions

We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号