首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   36篇
  国内免费   4篇
  2024年   1篇
  2023年   8篇
  2022年   14篇
  2021年   22篇
  2020年   16篇
  2019年   20篇
  2018年   22篇
  2017年   24篇
  2016年   33篇
  2015年   27篇
  2014年   47篇
  2013年   41篇
  2012年   38篇
  2011年   46篇
  2010年   18篇
  2009年   19篇
  2008年   14篇
  2007年   15篇
  2006年   19篇
  2005年   13篇
  2004年   12篇
  2003年   7篇
  2002年   11篇
  2001年   4篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有516条查询结果,搜索用时 31 毫秒
71.
Peptidoglycan recognition protein SA (PGRP‐SA) is a key pattern recognition receptor in the insect innate immune system. PGRP‐SA can bind to bacterial PGN and activate the Toll pathway, which triggers the expression and release of antimicrobial peptides to prevent bacterial infection. Here, we report the first structure of Apis mellifera PGRP‐SA from Hymenoptera at 1.86 Å resolution. The overall architecture of Am‐PGRP‐SA was similar to the Drosophila PGRP‐SA; however, the residues involved in PGN binding groove were not conserved, and the binding pocket was narrower. This structure gives insight into PGN binding characteristics in honeybees.  相似文献   
72.
73.
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050)samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged [ 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and B 3 years (58.19%).Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders.Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels.  相似文献   
74.
The present study investigated the role of sugar beet extract (SBE) as a bio-stimulant to ameliorate the adverse effects of drought on seed germination and growth of wheat (Triticum aestivum L.). Different concentrations of SBE (0, 10, 20, 30, 40 and 50%) were used for priming the wheat seeds. The experiment was conducted in laboratory (PEG-8000 was used to create water stress) as well as under natural environmental conditions (using soil with 100 and 60% field capacity). Significant ameliorating effects of seed priming with SBE were recorded on different germination attributes, i.e., time to 50% emergence (E50), germination index (GI), mean emergence time (MET), germination percentage (G%), coefficient of uniformity of emergence (CUE) and germination energy (GE) under water stress. Without priming, the plants exhibited symptoms of water stress like decreased biomass, reduction in photosynthetic pigments, e.g., chlorophyll, carotenoids. Seed pre-conditioning with SBE improved the plant growth, photosynthetic pigments, antioxidants’ activities and nutrient homeostasis of plants facing water deficit and grown under well-watered conditions. The maximum increase in biomass, content of chlorophyll, carotenoids and activities of superoxide dismutase (SOD) and peroxidase (POD) was 13.4, 8.5, 11.9, 7.6, 13.6, 42.0, 19.8%, respectively, with SBE seed priming under water stress. In conclusion, SBE seed priming effectively reduced the negativities of water stress on seed germination which resulted in better plant growth in terms of enhanced biomass, photosynthetic pigments, antioxidant defense mechanism and better nutrient homeostasis. Overall, the findings suggest that seed pre-conditioning with SBE as a bio-stimulant will be helpful for better crop stand establishment under low field capacity, especially in semi-arid and arid agricultural fields.  相似文献   
75.
In an experiment that factorially manipulated plant diversity, CO2, and N, we quantified the effects of the presence of species on assemblage biomass over 10 time points distributed over 5 years. Thirteen of the 16 species planted had statistically significant effects on aboveground and/or belowground biomass. Species differed dramatically in their effects on biomass without any relationship between aboveground and below‐ground effects. Temporal complementarity among species in their effects seasonally, successionally, and in response to a dry summer maintained the diversity–biomass relationships over time and may be the cause behind higher diversity plots having less variation in biomass over time. The response of plant biomass to elevated N, but not CO2, was at times entirely dependent on the presence of a single species.  相似文献   
76.
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress.  相似文献   
77.
78.
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 104 M?1, and with the increase in temperature, Stern–Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV–visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug–albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (Ro) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.  相似文献   
79.
This study investigated the olfactory responses of 3 thrips species [Frankliniella schultzei Trybom, F. occidentalis Pergrande and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] to cotton seedlings [Gossypium hirsutum L. (Malvales: Malvaceae)] simultaneously damaged by different combinations of herbivores. Cotton seedlings were damaged by foliar feeding Tetranychus urticae Koch (Trombidiforms: Tetranychidae), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), Aphis gossypii Glover (Hemiptera: Aphididae) or root feeding Tenebrio molitor L. (Coleoptera: Tenebrionidae). Thrips responses to plants simultaneously damaged by 2 species of herbivore were additive and equivalent to the sum of the responses of thrips to plants damaged by single herbivore species feeding alone. For example, F. occidentalis was attracted to T. urticae damaged plants but more attracted to undamaged plants than to plants damaged by H. armigera. Plants simultaneously damaged by low densities of T. urticae and H. armigera repelled F. occidentalis but as T. urticae density increased relative to H. armigera density, F. occidentalis attraction to coinfested plants increased proportionally. Thrips tabaci did not discriminate between undamaged plants and plants damaged by H. armigera but were attracted to plants damaged by T. urticae alone or simultaneously damaged by T. urticae and H. armigera. Olfactometer assays showed that simultaneous feeding by 2 herbivores on a plant can affect predator–prey interactions. Attraction of F. occidentalis to plants damaged by its T. urticae prey was reduced when the plant was simultaneously damaged by H. armigera, T. molitor, or A. gossypii and F. schultzei was more attracted to plants simultaneously damaged by T. urticae and H. armigera than to plants damaged by T. urticae alone. We conclude that plant responses to feeding by 1 species of herbivore are affected by responses to feeding by other herbivores. These plant‐mediated interactions between herbivore complexes affect the behavioral responses of thrips which vary between species and are highly context dependent.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号