首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   10篇
  122篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   3篇
  2013年   6篇
  2012年   13篇
  2011年   9篇
  2010年   10篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   11篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   6篇
  1999年   1篇
  1997年   2篇
  1995年   3篇
  1991年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
31.
32.
33.
Despite aggressive surgery, radiation therapy, and chemotherapy, glioblastoma multiforme (GBM) is refractory to therapy, recurs quickly, and results in a median survival time of only 14 months. The modulation of the apoptotic receptor Fas with cytotoxic agents could potentiate the response to therapy. However, Fas ligand (FasL) is not expressed in the brain and therefore this Fas-inducing cell death mechanism cannot be utilized. Vaccination of patients with gliomas has shown promising responses. In animal studies, brain tumors of vaccinated mice were infiltrated with activated T cells. Since activated immune cells express FasL, we hypothesized that combination of immunotherapy with chemotherapy can activate Fas signaling, which could be responsible for a synergistic or additive effect of the combination. When we treated the human glioma cell line U-87 and GBM tumor cells isolated from patients with TPT, Fas was up regulated. Subsequent administration of soluble Fas ligand (sFasL) to treated cells significantly increased their cell death indicating that these Fas receptors were functional. Similar effect was observed when CD3+ T cells were used as a source of the FasL, indicating that the up regulated Fas expression on glioma cells increases their susceptibility to cytotoxic T cell killing. This additive effect was not observed when glioma cells were pre-treated with temozolomide, which was unable to increase Fas expression in tumor. Inhibition of FasL activity with the antagonistic antibody Nok-1 mitigated these effects confirming that these responses were specifically mediated by the Fas-FasL interaction. Furthermore, the CD3+ T cells co-cultured with topotecan treated U-87 and autologous GBM tumor cells showed a significant increase in expression in IFN-γ, a key cytokine produced by activated T cells, and accordingly enhanced tumor cytotoxicity. Based on our data we conclude that drugs, such as topotecan, which cause up regulation of Fas on glioma cells can be potentially exploited with immunotherapy to enhance immune clearance of tumors via Fas signaling. Jun Wei and Guillermo DeAngulo are Co-lead authors.  相似文献   
34.
35.
In its attempt to survive, the fungal cell can change the cell wall composition and/or structure in response to environmental stress. The molecules involved in these compensatory mechanisms are a possible target for the development of effective antifungal agents. In the thermodimorphic fungus Paracoccidioides brasiliensis Pb01, the main polymers that compose the cell wall are chitin and glucans. These polymers form a primary barrier that is responsible for the structural integrity and formation of the cell wall. In this study the behaviour of P. brasiliensis was evaluated under incubation with cell wall stressor agents such as Calcofluor White (CFW), Congo Red (CR), Sodium Dodecyl Sulphate (SDS), NaCl, KCl, and Sorbitol. Use of concentrations at which the fungus is visually sensitive to those agents helped to explain some of the adaptive mechanisms used by P. brasiliensis in response to cell wall stress. Our results show that 1,3-β-D-glucan synthase (PbFKS1), glucosamine-6-phosphate synthase (PbGFA1) and β-1,3-glucanosyltransferase (PbGEL3)as well as 1,3-β-D-glucan and N-acetylglucosamine (GlcNAc) residues in the cell wall are involved in compensatory mechanisms against cell wall damage.  相似文献   
36.
Anscombe N 《IEEE pulse》2011,2(2):12-19
  相似文献   
37.
2-Hydroxyisobutyryl-coenzyme A mutase, originally discovered in the context of methyl tert-butyl ether degradation in Aquincola tertiaricarbonis L108, catalyzes the isomerization of 3-hydroxybutyryl-coenzyme A (3-HB-CoA) to 2-hydroxyisobutyryl-CoA. It thus constitutes the basis for a biotechnological route from practically any renewable carbon to 2-hydroxyisobutyrate (2-HIB) via the common metabolite 3-hydroxybutyrate. At first sight, recombinant Cupriavidus necator H16 expressing the mutase seems to be well suited for such a synthesis process, as a strong overflow metabolism via (R)-3-HB-CoA is easily induced in this bacterium possessing the poly-3-hydroxybutyrate metabolism. However, the recently established stereospecificity of the mutase, dominantly preferring the (S)-enantiomer of 3-HB-CoA, calls for a closer investigation of C. necator as potential 2-HIB production strain and raised the question about the strain’s potential to yield 2-HIB from substrates directly providing (S)-3-HB-CoA. We compared two mutase-expressing C. necator H16 strains for their capability to synthesize 2-HIB from fructose and butyrate, delivering either (R)- or (S)-3-HB-CoA. Our results indicate that due to the enantiospecificity of the mutase, fructose is a weaker substrate for 2-HIB synthesis than butyrate. Production rates achieved with the PHB-negative strain H16 PHB?4 on butyrate were higher than on fructose. Using the wild-type did not significantly improve the production rates as the latter showed a 34-fold and a 5-fold lower 2-HIB synthesis rate compared to H16 PHB?4 on fructose and butyrate, respectively. Moreover, both strains showed concomitant excretion of undesired side products, such as pyruvate and 3-hydroxybutyrate, significantly decreasing the 2-HIB yield.  相似文献   
38.
39.
The course of pulmonary infection in rats infected by intranasal inoculation with a Staphylococcus aureus stable protoplast L-form was studied. Blood and bronchoalveolar samples were taken on days 3, 7, 14 and 30 after challenge and were investigated by microbiological, electron-microscopic, cytochemical and cytometric methods. The electron microscopic data and isolation of L-form cultures from bronchoalveolar samples at all experimental times demonstrated the ability of S. aureus L-form cells to internalize, replicate and persist in the lungs of infected rats to the end of the observation period, in contrast to the S. aureus parental form. It was found that persisting L-form evoked ineffectual phagocytose by alveolar macrophages and low but long-lasting inflammatory reaction in rats. The experimental model of pulmonary infection with S. aureus L-form suggests that the cell-wall-deficient bacterial forms may be involved in the pathogenesis of chronic and latent lung infections.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号