首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   9篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   11篇
  2013年   20篇
  2012年   26篇
  2011年   16篇
  2010年   13篇
  2009年   7篇
  2008年   12篇
  2007年   16篇
  2006年   15篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
91.
Primary neurons are a common tool for investigating gene function for survival and morphological and functional differentiation. Gene transfer techniques play an important role in this context. However, the efficacy of conventional gene transfer techniques, in particular for primary motoneurons is low so that it is not possible to distinguish whether the observed effects are representative for all neurons or only for the small subpopulation that expresses the transfected cDNA. In order to develop techniques that allow high gene transfer rates, we have optimized lentiviral-based gene transfer for cultured motoneurons by using a replication-defective viral vector system. These techniques result in transduction efficacies higher than 50%, as judged by EGFP expression under the control of SFFV or CMV promoters. Under the same conditions, survival and morphology of the cultured motoneurons was not altered, at least not when virus titers did not exceed a multiplicity of infection of 100. Under the same cell culture conditions, electroporation resulted in less than 5% transfected motoneurons and reduced survival. Therefore we consider this lentivirus-based gene transfer protocol as a suitable tool to study the effects of gene transfer on motoneuron survival, differentiation and function.  相似文献   
92.
The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.  相似文献   
93.
94.
In the era of climate change, abiotic stresses (e.g., salinity, drought, extreme temperature, flooding, metal/metalloid(s), UV radiation, ozone, etc.) are considered as one of the most complex environmental constraints that restricts crop production worldwide. Introduction of stress-tolerant crop cultivars is the most auspicious way of surviving this constraint, and to produce these types of tolerant crops. Several bioengineering mechanisms involved in stress signaling are being adopted in this regard. One example of this kind of manipulation is the osmotic adjustment. The quarternary ammonium compound glycinebetaine (GB), also originally referred to as betaine is a methylated glycine derivative. Among the betaines, GB is the most abundant one in plants, which is mostly produced in response to dehydration caused by different abiotic stresses like drought, salinity, and extreme temperature. Glycinebetaine helps in decreased accumulation and detoxification of ROS, thereby restoring photosynthesis and reducing oxidative stress. It takes part in stabilizing membranes and macromolecules. It is also involved in the stabilization and protection of photosynthetic components, such as ribulose-1, 5-bisphosphate carboxylase/oxygenase, photosystem II and quarternary enzyme and protein complex structures under environmental stresses. Glycinebetaine was found to perform in chaperone-induced protein disaggregation. In addition, GB can confer stress tolerance in very low concentrations, and it acts in activating defense responsive genes with stress protection. Recently, field application of GB has also shown protective effects against environmental adversities increasing crop yield and quality. In this review, we will focus on the role of GB in conferring abiotic stress tolerance and the possible ways to engineer GB biosynthesis in plants.  相似文献   
95.
The effect of various N,N′-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42.  相似文献   
96.
The World Health Organization (WHO) recommends continuing azithromycin mass drug administration (MDA) for trachoma until endemic regions drop below 5% prevalence of active trachoma in children aged 1–9 years. Azithromycin targets the ocular strains of Chlamydia trachomatis that cause trachoma. Regions with low prevalence of active trachoma may have little if any ocular chlamydia, and, thus, may not benefit from azithromycin treatment. Understanding what happens to active trachoma and ocular chlamydia prevalence after stopping azithromycin MDA may improve future treatment decisions. We systematically reviewed published evidence for community prevalence of both active trachoma and ocular chlamydia after cessation of azithromycin distribution. We searched electronic databases for all peer-reviewed studies published before May 2020 that included at least 2 post-MDA surveillance surveys of ocular chlamydia and/or the active trachoma marker, trachomatous inflammation–follicular (TF) prevalence. We assessed trends in the prevalence of both indicators over time after stopping azithromycin MDA. Of 140 identified studies, 21 met inclusion criteria and were used for qualitative synthesis. Post-MDA, we found a gradual increase in ocular chlamydia infection prevalence over time, while TF prevalence generally gradually declined. Ocular chlamydia infection may be a better measurement tool compared to TF for detecting trachoma recrudescence in communities after stopping azithromycin MDA. These findings may guide future trachoma treatment and surveillance efforts.  相似文献   
97.
98.

Background

Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.

Methods/Findings

A total of 634 human and 105 domestic canine and feline fecal samples were randomly collected. The overall prevalence of hookworm in humans and animals determined via microscopy was 9.1% (95% CI = 7.0–11.7%) and 61.9% (95% CI = 51.2–71.2%), respectively. Multivariate analysis indicated that participants without the provision of proper latrine systems (OR = 3.5; 95% CI = 1.53–8.00; p = 0.003), walking barefooted (OR = 5.6; 95% CI = 2.91–10.73; p<0.001) and in close contact with pets or livestock (OR = 2.9; 95% CI = 1.19–7.15; p = 0.009) were more likely to be infected with hookworms. Molecular analysis revealed that while most hookworm-positive individuals were infected with Necator americanus, Ancylostoma ceylanicum constituted 12.8% of single infections and 10.6% mixed infections with N. americanus. As for cats and dogs, 52.0% were positive for A. ceylanicum, 46.0% for Ancylostoma caninum and 2.0% for Ancylostoma braziliense and all were single infections.

Conclusion

This present study provided evidence based on the combination of epidemiological, conventional diagnostic and molecular tools that A. ceylanicum infection is common and that its transmission dynamic in endemic areas in Malaysia is heightened by the close contact of human and domestic animal (i.e., dogs and cats) populations.  相似文献   
99.
One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear’s population.  相似文献   
100.
Lens growth involves the proliferation of epithelial cells, followed by their migration to the equator region and differentiation into secondary fiber cells. It is widely accepted that fibroblast growth factor (FGF) signaling is required for the differentiation of lens epithelial cells into crystallin-rich fibers, but this signaling is insufficient to induce full differentiation. To better understand lens development, investigatory and functional analyses of novel molecules are required. Here, we demonstrate that Equarin, which is a novel secreted molecule, was expressed exclusively in the lens equator region during chick lens development. Equarin upregulated the expression of fiber markers, as demonstrated using in ovo electroporation. In a primary lens cell culture, Equarin promoted the biochemical and morphological changes associated with the differentiation of lens epithelial cells to fibers. A loss-of-function analysis was performed using zinc-finger nucleases targeting the Equarin gene. Lens cell differentiation was markedly inhibited when endogenous Equarin was blocked, indicating that Equarin was essential for normal chick lens differentiation. Furthermore, biochemical analysis showed that Equarin directly bound to FGFs and heparan sulfate proteoglycan and thereby upregulated the expression of phospho-ERK1/2 (ERK-P) proteins, the downstream of the FGF signaling pathway, in vivo and in vitro. Conversely, the absence of endogenous Equarin clearly diminished FGF-induced fiber differentiation. Taken together, our results suggest that Equarin is involved as an FGF modulator in chick lens differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号