首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7890篇
  免费   709篇
  国内免费   1篇
  2021年   143篇
  2020年   70篇
  2019年   85篇
  2018年   98篇
  2017年   100篇
  2016年   157篇
  2015年   300篇
  2014年   363篇
  2013年   471篇
  2012年   526篇
  2011年   520篇
  2010年   338篇
  2009年   326篇
  2008年   403篇
  2007年   422篇
  2006年   405篇
  2005年   372篇
  2004年   345篇
  2003年   334篇
  2002年   303篇
  2001年   93篇
  2000年   98篇
  1999年   101篇
  1998年   87篇
  1997年   71篇
  1996年   58篇
  1995年   69篇
  1994年   67篇
  1993年   70篇
  1992年   75篇
  1991年   57篇
  1990年   73篇
  1989年   69篇
  1988年   53篇
  1987年   66篇
  1986年   58篇
  1985年   53篇
  1984年   69篇
  1983年   65篇
  1982年   64篇
  1981年   51篇
  1980年   52篇
  1979年   45篇
  1978年   57篇
  1977年   42篇
  1976年   44篇
  1974年   58篇
  1973年   45篇
  1971年   50篇
  1970年   43篇
排序方式: 共有8600条查询结果,搜索用时 15 毫秒
961.
Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.  相似文献   
962.
The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.  相似文献   
963.
Mutations in the gene of human RNase T2 are associated with white matter disease of the human brain. Although brain abnormalities (bilateral temporal lobe cysts and multifocal white matter lesions) and clinical symptoms (psychomotor impairments, spasticity and epilepsy) are well characterized, the pathomechanism of RNase T2 deficiency remains unclear. RNase T2 is the only member of the Rh/T2/S family of acidic hydrolases in humans. In recent years, new functions such as tumor suppressing properties of RNase T2 have been reported that are independent of its catalytic activity. We determined the X-ray structure of human RNase T2 at 1.6 Å resolution. The α+β core fold shows high similarity to those of known T2 RNase structures from plants, while, in contrast, the external loop regions show distinct structural differences. The catalytic features of RNase T2 in presence of bivalent cations were analyzed and the structural consequences of known clinical mutations were investigated. Our data provide further insight into the function of human RNase T2 and may prove useful in understanding its mode of action independent of its enzymatic activity.  相似文献   
964.

Background and Aims

There is increasing evidence that suppressed bud burst and thus epicormic shoot emergence (sprouting) are controlled by water–carbohydrate supplies to entire trees and buds. This direct evidence is still lacking for oak. In other respects, recent studies focused on sessile oak, Quercus petraea, have confirmed the important constraints of sprouting by epicormic ontogeny. The main objective of this paper was thus to provide provisional confirmation of the water–carbohydrate control and direct evidence of the ontogenic constraints by bringing together results already published in separate studies on water status and distribution of carbohydrates, and on accompanying vegetation and epicormics, which also quantify epicormic ontogeny.

Methods

This paper analyses results gained from a sessile oak experiment in which part of the site was free from fairly tall, dense accompanying vegetation. This experiment was initially focused on stand water status and more recently on the carbohydrate distribution of dominant trees. External observations of the epicormic composition and internal observations with X-ray computer tomography were undertaken on 60 and six trees, respectively.

Key Results

Sprouting was more intense in the part of the stand free from accompanying vegetation and on upper trunk segments. A clear effect of epicormic ontogeny was demonstrated as well: the more epicormics a trunk segment bears, the more chances it had to bear sprouts.

Conclusions

These results indirectly infer water–carbohydrate control and show direct evidence of constraints by epicormic ontogeny. These results have far-reaching consequences related to the quantification of all functions fulfilled by any type of epicormic structure in any part of the tree.  相似文献   
965.
In animal models of partial urethral obstruction (PUO), altered smooth muscle function/contractility may be linked to changes in molecules that regulate calcium signaling/sensitization. PUO was created in male rats, and urodynamic studies were conducted 2 and 6 wk post-PUO. Cystometric recordings were analyzed for the presence or absence of nonvoiding contractions [i.e., detrusor overactivity (DO)]. RT-PCR and Western blots were performed on a subpopulation of rats to study the relationship between the expression of RhoA, L-type Ca(2+) channels, Rho kinase-1, Rho kinase-2, inositol 1,4,5-trisphosphate, ryanodine receptor, sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and protein kinase C (PKC)-potentiated phosphatase inhibitor of 17 kDa, and urodynamic findings in the same animal. Animals displayed DO at 2 (38%) and 6 wk (43%) post-PUO, increases were seen in in vivo pressures at 2 wk, and residual volume at 6 wk. Statistical analysis of RT-PCR and Western blot data at 2 wk, during the compensatory phase of detrusor hypertrophy, documented that expression of molecules that regulate calcium signaling and sensitization was consistently lower in obstructed rats without DO than those with DO or control rats. Among rats with DO at 2 wk, linear regression analysis revealed positive correlations between in vivo pressures and protein and mRNA expression of several regulatory molecules. At 6 wk, in the presence of overt signs of bladder decompensation, no clear or consistent alterations in expression of these same targets were observed at the protein level. These data extend prior work to suggest that molecular profiling of key regulatory molecules during the progression of PUO-mediated bladder dysfunction may shed new light on potential biomarkers and/or therapeutic targets.  相似文献   
966.
Current techniques to describe atrial function are limited by their load dependency and hence do not accurately reflect intrinsic mechanical properties. To assess the impact of atrial fibrillation on atrial function, combined pressure-volume relationships (PVR) measured by conductance catheters were used to evaluate the right (RA) and left (LA) atrium in 12 isoflurane-anesthetized pigs. Biatrial PVR were recorded over a wide range of volumes during transient caval occlusion at baseline sinus rhythm (SR), after onset of rapid atrial pacing (RAP), after 1 h of RAP, after conversion to SR, and after 1 h of recovery. Cardiac output decreased by 16% (P = 0.008) with onset of RAP. Mean LA and RA pressures increased by 21 and 40% (P < 0.001), respectively, and remained elevated during the entire recovery period. RA reservoir function increased from 51 to 58% and significantly dropped to 43% after resumption of SR (P = 0.017). Immediately after RAP, a right shift of LA end-systolic PVR-intercept for end-systolic volume required to generate an atrial end-systolic pressure of 10 mmHg (24.4 ± 4.9 to 28.1 ± 5.2 ml, P = 0.005) indicated impaired contractility compared with baseline. Active LA emptying fraction dropped from 17.6 ± 7.5 to 11.7 ± 3.7% (P < 0.001), LA stroke volume and ΔP/Δt(max)/P declined by 22% (P = 0.038 and 0.026, respectively), while there was only a trend to impaired RA systolic function. Stiffness quantified by the ratio of pressure to volume at end-diastole was increased immediately after RAP only in the RA (P = 0.020), but end-diastolic PVR shifted rightward in both atria (P = 0.011 LA, P = 0.045 RA). These data suggest that even short periods of RAP have a differential impact on RA and LA function, which was sustained for 1 h after conversion to SR.  相似文献   
967.
The present study examined the temporal pattern of responding in a conditioned bar-press suppression task in rats. Rats were exposed to either a 30-s or a 120-s conditioned stimulus (CS) followed by a footshock. Training took place either while the rats were lever-pressing for water (online), or with the lever removed from the box (offline). They were then exposed to the CS while they were lever-pressing for water, either in the training context or in a different context. Bar-press suppression during the CS was constant across the duration of the CS during training, but was restricted to the initial portion of the CS at the time of testing, especially when subjects were tested in a different context. Those results replicate the reactive (as opposed to anticipatory) pattern observed in a lick suppression procedure by Jozefowiez et al. (2011) and indicate that a change in context at the time of testing might be critical for its expression.  相似文献   
968.
Miller RR 《Behavioural processes》2012,90(1):81-3; discussion 87-8
Gallistel (2012) asserts that animals use rationalistic reasoning (i.e., information theory and Bayesian inference) to make decisions that underlie select extinction phenomena. Rational processes are presumed to lead to evolutionarily optimal behavior. Thus, Gallistel's model is a type of optimality theory. But optimality theory is only a theory, a theory about an ideal organism, and its predictions frequently deviate appreciably from observed behavior of animals in the laboratory and the real world. That is, behavior of animals is often far from optimal, as is evident in many behavioral phenomena. Hence, appeals to optimality theory to explain, rather than illuminate, actual behavior are misguided.  相似文献   
969.
AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.  相似文献   
970.
Gephyrin is a scaffold protein essential for the postsynaptic clustering of inhibitory glycine and different subtypes of GABA(A) receptors. The cellular and molecular mechanisms involved in gephyrin-mediated receptor clustering are still not well understood. Here we provide evidence that the gephyrin-binding protein collybistin is involved in regulating the phosphorylation of gephyrin. We demonstrate that the widely used monoclonal antibody mAb7a is a phospho-specific antibody that allows the cellular and biochemical analysis of gephyrin phosphorylation at Ser-270. In addition, another neighbored epitope determinant was identified at position Thr-276. Analysis of the double mutant gephyrin(T276A,S277A) revealed significant reduction in gephyrin cluster formation and altered oligomerization behavior of gephyrin. Moreover, pharmacological inhibition of cyclin-dependent kinases in hippocampal neurons reduced postsynaptic gephyrin mAb7a immunoreactivities. In vitro phosphorylation assays and phosphopeptide competition experiments revealed a phosphorylation at Ser-270 depending on enzyme activities of cyclin-dependent kinases CDK1, -2, or -5. These data indicate that collybistin and cyclin-dependent kinases are involved in regulating the phosphorylation of gephyrin at postsynaptic membrane specializations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号