首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2273篇
  免费   202篇
  2023年   5篇
  2022年   18篇
  2021年   64篇
  2020年   32篇
  2019年   31篇
  2018年   39篇
  2017年   40篇
  2016年   60篇
  2015年   120篇
  2014年   148篇
  2013年   171篇
  2012年   185篇
  2011年   162篇
  2010年   108篇
  2009年   99篇
  2008年   119篇
  2007年   148篇
  2006年   129篇
  2005年   105篇
  2004年   94篇
  2003年   109篇
  2002年   88篇
  2001年   25篇
  2000年   35篇
  1999年   30篇
  1998年   20篇
  1997年   14篇
  1996年   13篇
  1995年   11篇
  1994年   9篇
  1993年   9篇
  1992年   15篇
  1991年   15篇
  1990年   15篇
  1989年   20篇
  1988年   14篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1981年   8篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1974年   10篇
  1972年   6篇
  1968年   5篇
  1925年   6篇
排序方式: 共有2475条查询结果,搜索用时 62 毫秒
81.
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi‐chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division‐replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.  相似文献   
82.
Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous. This asexual population arose from a single worker ancestor approximately 20 years ago and has persisted for at least 100 generations. Thelytokous parthenogenesis results in a 1/3 of loss of heterozygosity with each generation. Yet, this population retains heterozygosity throughout its genome due to selection against homozygotes. Deep sequencing of one bee from each of the three known sub‐lineages of the population revealed that 3,766 of 10,884 genes (34%) have retained heterozygosity across all sub‐lineages, suggesting that these genes have heterozygote advantage. The maintenance of heterozygosity in the same genes and genomic regions in all three sub‐lineages suggests that nearly every chromosome carries genes that show sufficient heterozygote advantage to be selectively detrimental when homozygous.  相似文献   
83.
84.
85.
Scaffolding of membrane proteins is a common strategy for forming complexes of proteins, including some connexins, within membrane microdomains. Here we describe studies indicating that Cx32 interacts with a PDZ-containing scaffolding protein, Dlgh1 (Discs Large homolog 1). Initial screens of liver lysates using antibody arrays indicated an interaction between Cx32 and Dlgh1 that was confirmed using coimmunoprecipitation studies. Yeast two-hybrid complementation determined that the Cx32 bound via interaction with the SH3/Hook domain of Dlgh1. Confocal microscopy of liver sections revealed that Cx32 and Dlgh1 could colocalize in hepatocyte membranes in wild type mice. Examination of levels and localization of Dlgh1 in livers from Cx32 null mice indicate that, in the absence of Cx32, Dlgh1 was decreased, and the remainder was translocated from the hepatocyte membrane to the nucleus with some remaining in cytoplasmic compartments. This translocation was confirmed by Western blots comparing Dlgh1 levels in nuclear extracts from wild type and Cx32 null murine livers. Using SKHep cells stably transfected with Cx32 under the control of a tet-off promoter, we found that acute removal of Cx32 led to a decrease of membrane-localized Dlgh1 and an increase in the nuclear localization of this tumor suppressor protein. Together, these results suggest that loss of Cx32 alters the levels, localization, and interactions of the tumor suppressor protein Dlgh1, events known in other systems to alter cell cycle and increase tumorigenicity.  相似文献   
86.
Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis.  相似文献   
87.
There are many anti‐predatory escape strategies in animals. A well‐established method to assess escape behavior is the flight initiation distance (FID), which is the distance between prey and predator at which an animal flees. Previous studies in various species throughout the animal kingdom have shown that group size, urbanization, and distance to refuge and body mass affect FID. In most species, FID increases if body mass, group size or distance to refuge decreases. However, how age and sexual dimorphism affect FID is rather unknown. Here, we assess the escape behavior and FID of the black redstart (Phoenicurus ochruros), a small turdid passerine. When approached by a human, males initiated flights later, that is allowing a closer approach than females. Males of this species are more conspicuous, and therefore, may exhibit aposematism to deter potential predators or are less fearful than females. Additionally, juveniles fled at shorter distances and fled to lower heights than adults. Lastly, concerning escape strategy, black redstarts, unless other passerine birds, fled less often into cover, but rather onto open or elevated spots. Black redstarts are especially prone to predation by ambushing predators that might hide in cover. Hence, this species most likely has a higher chance of escaping by fleeing to an open spot rather than to a potentially risky cover.  相似文献   
88.
The aerosphere is utilized by billions of birds, moving for different reasons and from short to great distances spanning tens of thousands of kilometres. The aerosphere, however, is also utilized by aviation which leads to increasing conflicts in and around airfields as well as en‐route. Collisions between birds and aircraft cost billions of euros annually and, in some cases, result in the loss of human lives. Simultaneously, aviation has diverse negative impacts on wildlife. During avian migration, due to the sheer numbers of birds in the air, the risk of bird strikes becomes particularly acute for low‐flying aircraft, especially during military training flights. Over the last few decades, air forces across Europe and the Middle East have been developing solutions that integrate ecological research and aviation policy to reduce mutual negative interactions between birds and aircraft. In this paper we 1) provide a brief overview of the systems currently used in military aviation to monitor bird migration movements in the aerosphere, 2) provide a brief overview of the impact of bird strikes on military low‐level operations, and 3) estimate the effectiveness of migration monitoring systems in bird strike avoidance. We compare systems from the Netherlands, Belgium, Germany, Poland and Israel, which are all areas that Palearctic migrants cross twice a year in huge numbers. We show that the en‐route bird strikes have decreased considerably in countries where avoidance systems have been implemented, and that consequently bird strikes are on average 45% less frequent in countries with implemented avoidance systems in place. We conclude by showing the roles of operational weather radar networks, forecast models and international and interdisciplinary collaboration to create safer skies for aviation and birds.  相似文献   
89.
Alkaline phosphatase (ALP) activity expressed on the external surface of cultured fetal rat calvaria cells and its relationship with mineral deposition were investigated under pH physiological conditions. After replacement of culture medium by assay buffer and addition of p-nitrophenyl phosphate (pNPP), the rate of substrate hydrolysis catalyzed by whole cells remained constant for up to seven successive incubations of 10 min and was optimal over the pH range 7.6–8.2. It was decreased by levamisole by a 90% inhibition at 1 mM which was reversible within 10 min, dexamisole having no effect. Values of apparent Km for pNPP were close to 0.1 mM, and inhibition of pNPP hydrolysis by levamisole was uncompetitive (Ki = 45 μM). Phosphatidylinositol-specific phospholipase C (PI-PLC) produced the release into the medium of a p-nitrophenyl phosphatase (pNPPase) sensitive to levamisole at pH 7.8. The released activity whose rate was constant up to 75 min represented after 15 min 60% of the value of ecto-pNPPase activity. After 75 min of PI-PLC treatment the ecto-pNPPase activity remained unchanged despite the 30% decrease in Nonidet P-40-extractable ALP activity. High levels of 45Ca incorporation into cell layers used as index of mineral deposition were decreased by levamisole in a stereospecific manner after 4 h, an effect which was reversed within 4 h after inhibitor removal, in accordance with ecto-pNPPase activity variations. These results evidenced the levamisole-sensitive activity of a glycosylphosphatidylinositol-anchored pNPPase consistent with ALP acting as an ecto-enzyme whose functioning under physiological conditions was correlated to 45Ca incorporation and permit the prediction of the physiological importance of the enzyme dynamic equilibrium at the cell surface in cultured fetal calvaria cells. © 1996 Wiley-Liss, Inc.  相似文献   
90.
The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS.

The sympathetic nervous system produces neurotransmitters such as catecholamines which contribute to immune balance by promoting anti-inflammatory B cells. This study shows that mouse B cells can themselves synthesize, sense, and transport catecholamines, which in turn modulate regulatory B cell function in an autocrine and/or paracrine manner to suppress T cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号