首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2543篇
  免费   239篇
  2782篇
  2023年   12篇
  2022年   26篇
  2021年   70篇
  2020年   36篇
  2019年   40篇
  2018年   48篇
  2017年   45篇
  2016年   73篇
  2015年   137篇
  2014年   174篇
  2013年   198篇
  2012年   213篇
  2011年   186篇
  2010年   124篇
  2009年   106篇
  2008年   136篇
  2007年   147篇
  2006年   126篇
  2005年   110篇
  2004年   107篇
  2003年   117篇
  2002年   93篇
  2001年   27篇
  2000年   40篇
  1999年   38篇
  1998年   26篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   23篇
  1991年   12篇
  1990年   15篇
  1989年   18篇
  1988年   19篇
  1987年   17篇
  1986年   8篇
  1985年   8篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1978年   7篇
  1974年   6篇
  1973年   10篇
  1971年   11篇
  1969年   7篇
  1968年   8篇
  1965年   5篇
排序方式: 共有2782条查询结果,搜索用时 15 毫秒
21.
A whole genome scan was undertaken in a granddaughter design comprising 1158 progeny-tested bulls in order to map QTL influencing milk yield and composition. In this paper we report the identification of a locus on the centromeric end of bovine Chromosome (Chr) 14, with major effect on fat and protein percentage as well as milk yield. The genuine nature of this QTL was verified using the grand2-daughter design, that is, by tracing the segregating QTL alleles from heterozygous grandsires to their maternal grandsons and confirming the predicted QTL allele substitution effect. Received: 30 December 1997 / Accepted: 21 February 1998  相似文献   
22.
Arsenicals and antimonials are first line drugs for the treatment of trypanosomal and leishmanial diseases. To create the active form of the drug, Sb(V) must be reduced to Sb(III). Because arsenic and antimony are related metalloids, and arsenical resistant Leishmania strains are frequently cross-resistant to antimonials, we considered the possibility that Sb(V) is reduced by a leishmanial As(V) reductase. The sequence for the arsenate reductase of Saccharomyces cerevisiae, ScAcr2p, was used to clone the gene for a homologue, LmACR2, from Leishmania major. LmACR2 was able to complement the arsenate-sensitive phenotype of an arsC deletion strain of Escherichia coli or an ScACR2 deletion strain of Saccharomyces cerevisiae. Transfection of Leishmania infantum with LmACR2 augmented Pentostam sensitivity in intracellular amastigotes. LmACR2 was purified and shown to reduce both As(V) and Sb(V). This is the first report of an enzyme that confers Pentostam sensitivity in intracellular amastigotes of Leishmania. We propose that LmACR2 is responsible for reduction of the pentavalent antimony in Pentostam to the active trivalent form of the drug in Leishmania.  相似文献   
23.
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands’ services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand; (2) annually or seasonally water‐logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat‐forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.  相似文献   
24.
25.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   
26.
Pristine peatlands covered by Histosols (bogs and fens) with high water table and a restricted oxygen (O2) availability are known to have low emissions of nitrous oxide (N2O) but may be a significant source for atmospheric methane (CH4) which are both important greenhouse gases. For the first time N2O and CH4 fluxes of a pristine slope mire in the German Harz Mountains have been monitored. Previously reported peatlands are characterised by anaerobic conditions due to high water table levels. Slope mires monitored here receive O2 through slope water inflow. Gas fluxes have been monitored deploying closed chamber method on a central non-forested area and a forested area at the periphery of the slope mire. By means of groundwater piezometers water table levels, ammonium and nitrate contents as well as hydro-chemical variables like oxygen content and redox potential of the mire pore water have been concurrently measured with trace gas fluxes at both monitoring sites of the slope mire. The slope mire took up small amounts of atmospheric methane at a rate of −0.02 ± 0.01 kg C ha−1 year−1 revealing no significant difference between the forested and non-forested site. Higher uptake rates were observed during low water table level. In contrast to pristine peatlands influx of oxygen containing pore water into slope mire does limit reduction processes and resultant CH4 emission. N2O fluxes of the forested and non-forested sites of the slope mire did not differ and amounted to 0.25 ± 0.44 kg N ha−1 year−1. Higher emissions were observed at low water table levels and during thawing periods. In spite of favourable conditions N2O fluxes of the slope mire have been comparable to those of pristine peatlands.  相似文献   
27.
Cyclic nucleotide phosphodiesterase 11A (PDE11A) is the newest member in the PDE family. Although the tissue distribution of PDE11A mRNA has been shown, its protein expression pattern has not been well studied. The goal of this report is to investigate the distribution of PDE11A proteins in a wide range of normal and malignant human tissues. We utilized a polyclonal antibody that recognized all four PDE11A isoforms. Its specificity was demonstrated by Western blot analysis on a recombinant human PDE11A protein and native PDE11A proteins in various human tissues. Immunohistochemistry showed that PDE11A is widely expressed. Various degrees of immunoreactivity were observed in the epithelial cells, endothelial cells, and smooth muscle cells of all tissues examined. The highest expression was in the epithelial, endothelial, and smooth muscle cells of the prostate, Leydig, and spermatogenic cells of the testis, the tubule epithelial cells in the kidney, the epithelial and endothelial cells in the adrenal, the epithelial cells and macrophages in the colon, and the epidermis in the skin. Furthermore, PDE11A expression was also detected in several human carcinomas. Our results suggest that PDE11A might be involved in multiple physiological processes in various organs via its ability to modulate intracellular cAMP and cGMP levels.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号