首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3546篇
  免费   341篇
  2023年   16篇
  2022年   34篇
  2021年   84篇
  2020年   49篇
  2019年   51篇
  2018年   67篇
  2017年   65篇
  2016年   82篇
  2015年   161篇
  2014年   186篇
  2013年   240篇
  2012年   267篇
  2011年   238篇
  2010年   168篇
  2009年   145篇
  2008年   180篇
  2007年   196篇
  2006年   184篇
  2005年   153篇
  2004年   132篇
  2003年   149篇
  2002年   118篇
  2001年   55篇
  2000年   51篇
  1999年   59篇
  1998年   35篇
  1997年   39篇
  1996年   33篇
  1995年   33篇
  1994年   21篇
  1993年   28篇
  1992年   34篇
  1991年   39篇
  1990年   38篇
  1989年   31篇
  1988年   29篇
  1987年   26篇
  1986年   21篇
  1985年   36篇
  1984年   22篇
  1983年   23篇
  1982年   17篇
  1981年   19篇
  1980年   20篇
  1979年   28篇
  1978年   17篇
  1977年   17篇
  1975年   12篇
  1974年   30篇
  1973年   16篇
排序方式: 共有3887条查询结果,搜索用时 15 毫秒
31.
Electron microscopy of myosin-II molecules and filaments reacted with monoclonal antibodies demonstrates directly where the antibodies bind and shows that certain antibodies can inhibit the polymerization of myosin-II into filaments. The binding sites of seven of 23 different monoclonal antibodies were localized by platinum shadowing of myosin monomer-antibody complexes. The antibodies bind to a variety of sites on the myosin-II molecule, including the heads, the proximal end of the tail near the junction of the heads and tail, and the tip of the tail. The binding sites of eight of the 23 antibodies were also localized on myosin filaments by negative staining. Antibodies that bind to either the myosin heads or to the proximal end of the tail decorate the ends of the bipolar filaments. Some of the antibodies that bind to the tip of the myosin-II tail decorate the bare zone of the myosin-II thin filament with 14-nm periodicity. By combining the data from these electron microscope studies and the peptide mapping and competitive binding studies we have established the binding sites of 16 of 23 monoclonal antibodies. Two of the 23 antibodies block the formation of myosin-II filaments and given sufficient time, disassemble preformed myosin-II filaments. Both antibodies bind near one another at the tip of the myosin-II tail and are those that decorate the bare zone of preformed bipolar filaments with 14-nm periodicity. None of the other antibodies affect myosin filament formation, including one that binds to another site near the tip of the myosin-II tail. This demonstrates that antibodies can inhibit polymerization of myosin-II, but only when they bind to key sites on the tail of the molecule.  相似文献   
32.
Previous studies point to the acidic amino-terminal segment of band 3, the anion transport protein of the red cell, as the common binding site for hemoglobin and several of the glycolytic enzymes to the erythrocyte membrane. We now report on the interaction of hemoglobin with the synthetic peptide AcM-E-E-L-Q-D-D-Y-E-D-E, corresponding to the first 11 residues of band 3, and with the entire 43,000-Da cytoplasmic domain of the protein. In the presence of increasing concentrations of the peptide, the oxygen binding curve for hemoglobin is shifted progressively to the right, indicating that the peptide binds preferentially to deoxyhemoglobin. The dissociation constant for the deoxyhemoglobin-peptide complex at pH 7.2 in the presence of 100 mM NaCl is 0.31 mM. X-ray crystallographic studies were carried out to determine the exact mode of binding of the peptide to deoxyhemoglobin. The difference electron density map of the deoxyhemoglobin-peptide complex at 5 A resolution showed that the binding site extends deep (approximately 18 A) into the central cavity between the beta chains, along the dyad symmetry axis, and includes Arg 104 beta 1 and Arg 104 beta 2 as well as most of the basic residues within the 2,3-diphosphoglycerate binding site. The peptide appears to have an extended conformation with only 5 to 7 of the 11 residues in contact with hemoglobin. In agreement with the crystallographic studies, binding of the peptide to deoxyhemoglobin was blocked by cross-linking the beta chains at the entrance to the central cavity. Oxygen equilibrium studies showed that the isolated cytoplasmic fragment of band 3 also binds preferentially to deoxyhemoglobin. The binding of the 43,000-Da fragment to hemoglobin was inhibited in the cross-linked derivative indicating that the acidic amino-terminal residues in the intact cytoplasmic domain also bind within the central cavity of the hemoglobin tetramer.  相似文献   
33.
Summary This study investigates the nutritional requirements ofXenopus laevis neural crest cells and melanophores developing in vitro. A comparison is made between the growth and differentiation of cells in serum-containing medium and a chemically defined, serum-free medium that we have designed. Our chemically defined medium is more efficient than serum-supplemented medium in promoting proliferation of these cells. Several supplements are required to enhance culture development. These include insulin, α-melanocyte stimulating hormone, somatotropin, luteotrophic hormone, linoleic acid, uridine, and putrescine. In addition, collagen and fibronectin provide the most conductive environment tested for cell migration and adhesion. This work was supported by establishment and major equipment grants from the Alberta Heritage Foundation for Medical Research to N. C. M. Nadine C. Milos is a Heritage Medical Research Scholar of the Alberta Heritage Foundation for Medical Research.  相似文献   
34.
35.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   
36.
37.
38.
Sterile plants of maize, pea, and cucumber contain less auxin (extracted with methanol or ether) than nonsterile ones. The auxin content is restored within one day by reinfecting sterile plants (or only the shoots, with roots and culture medium remaining sterile) with epiphytic bacteria strains able to produce IAA or with soaking water of nonsterile seeds. Reinfection with bacteria, strains unable to produce IAA is ineffective. — The possibility of a bacterial auxin production during methanol extraction was excluded.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号