首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3015篇
  免费   175篇
  国内免费   3篇
  2024年   4篇
  2023年   19篇
  2022年   43篇
  2021年   107篇
  2020年   48篇
  2019年   76篇
  2018年   70篇
  2017年   76篇
  2016年   112篇
  2015年   159篇
  2014年   178篇
  2013年   272篇
  2012年   306篇
  2011年   256篇
  2010年   160篇
  2009年   155篇
  2008年   166篇
  2007年   201篇
  2006年   142篇
  2005年   134篇
  2004年   127篇
  2003年   101篇
  2002年   85篇
  2001年   19篇
  2000年   22篇
  1999年   9篇
  1998年   19篇
  1997年   14篇
  1996年   19篇
  1995年   14篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1967年   2篇
  1956年   2篇
排序方式: 共有3193条查询结果,搜索用时 265 毫秒
781.
782.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   
783.
We investigated the effects of acamprosate on alcohol-induced oxidative toxicity, microsomal membrane Ca2+-ATPase (MMCA) activity and N-methyl-d-aspartate receptor (NMDAR) subunits in rat brain. Forty male rats were equally divided into four groups. The first group was used as control, and the second group received ethanol. Acamprosate and acamprosate plus ethanol each day were administered to rats constituting the third and fourth groups for 21 days, respectively. Brain cortical and hippocampal samples were taken from the four groups after 21 days. Brain cortical lipid peroxidation (LP) levels and MMCA activity were higher in the alcohol group than in control, although glutathione peroxidase (GSH-Px), vitamin C, vitamin E and β-carotene values were lower in the alcohol group than in control. LP levels were further increased in the acamprosate and alcohol + acamprosate groups compared with the alcohol group. GSH-Px, vitamin A, vitamin C, vitamin E and β-carotene in the acamprosate and alcohol + acamprosate groups were further decreased compared with the alcohol group. Hippocampal NMDAR 2A and 2B subunit concentrations were lower in the alcohol group than in control, although they were increased by acamprosate and alcohol + acamprosate. Brain cortical MMCA activity was higher in the acamprosate group than in the alcohol-treated rats, although its activity was lower in the alcohol + acamprosate group than in the acamprosate group. Brain cortical reduced glutathione levels were not found to be statistically different in any of the groups. Oxidative stress has been proposed to explain the biological side effects of experimental alcohol intake. Acamprosate and alcohol-induced oxidative stress decreased brain antioxidant vitamins in the alcoholic rats.  相似文献   
784.
Gas chromatography-flame ionisation detection (GC-FID) and gas chromatography–mass spectrometry (GC–MS) analyses of the essential oils of leaves and fruits of the ornamental Shinus molle L. were reported and their allelopathic effect on wheat (Triticum aestivum L.) was evaluated. Qualitative and quantitative differences between fruit and leaf oils were observed. Both oils were rich in monoterpene hydrocarbons and the major constituents were limonene and β-phellendrene (35.9–65.4%), α-phellendrene (24.3–20.1%), myrcene (12.8–7.7%) and α-pinene (5.9–1.7%) for fruits and leaves, respectively. Both essential oils showed a dose-dependent allelopathic activity on wheat germination and radicle elongation with leaf oil being the more phytotoxic.  相似文献   
785.
In Gram-negative bacteria, production of bis-(3′,5′)-cyclic diguanylic acid (c-di-GMP) by diguanylate cyclases (DGCs) is the main trigger for production of extracellular polysaccharides and for biofilm formation. Mutants affected in c-di-GMP biosynthesis are impaired in biofilm formation, thus making DGCs interesting targets for new antimicrobial agents with anti-biofilm activity. In this report, we describe a strategy for the screening for DGC inhibitors consisting of a combination of three microbiological assays. The primary assay utilizes an Escherichia coli strain overexpressing the adrA gene, encoding the DGC protein AdrA, and relies on detection of AdrA-dependent cellulose production as red colony phenotype on solid medium supplemented with the dye Congo red (CR). Presence of DGC inhibitors blocking AdrA activity would result in a white phenotype on CR medium. The CR assay can be performed in 96-well microtiter plates, making it suitable for high-throughput screenings. To confirm specific inhibition of c-di-GMP biosynthesis, chemical compounds positive in the CR assay are tested for their ability to inhibit biofilm formation and in a reporter gene assay which monitors expression of curli-encoding genes as a function of DGC activity. Screening of a chemical library using the described approach allowed us to identify sulfathiazole, an antimetabolite drug, as an inhibitor of c-di-GMP biosynthesis. Sulfathiazole probably affects c-di-GMP biosynthesis in an indirect fashion rather than by binding to DGCs; however, sulfathiazole represents the first example of drug able to affect biofilm formation by interfering with c-di-GMP metabolism.  相似文献   
786.
Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA+ ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA+ ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms.Mitochondria not only supply cells with the bulk of their ATP but also contribute to the fine regulation of metabolism, calcium homeostasis, and apoptosis (27). Coordination of these functions is dependent on the dynamic nature of mitochondria (5). These organelles constantly fuse and divide to form small spheres, short rods, or long tubules and are actively transported to specific subcellular locations. These processes are essential for mammalian development, and defects can lead to degenerative diseases and cancers (9, 17). In eukaryotes, these organellar gymnastics are controlled by numerous pathways that preserve proper mitochondrial morphology and function (30, 45). The best-understood mitochondrial process is the fusion and fission pathways, which rely on conserved GTPases, and their binding partners to regulate organelle connectivity (10, 18, 45). There are also evidences that dynamic interactions between the outer membrane (OM) and inner membrane (IM) exist for coordinated fusion and fission, channeling of metabolites, and protein transport, but proteins playing a role in these interactions have yet to be identified (34). In the present study, we provide a detailed biochemical and functional characterization of the mitochondrial AAA+ ATPase ATAD3A protein that is present exclusively in multicellular eukaryotes and which participates in the control of mitochondrial dynamics at the interface between the IMs and OMs. Proteins related to the Atad3A genes have been previously identified in proteomic surveys of mouse brain mitochondria (28) and liver mitochondrial inner membrane (8), as mitochondrial DNA-binding proteins (4, 21, 44) and as nuclear mRNA-associated proteins (6). The Atad3A protein has also been identified as a cell surface antigen in some human tumors (16). Functional genomics identified the Drosophila Atad3A ortholog (bor) as a major gene positively regulated by the TOR (for target of rapamycin) signaling pathway involved in cell growth and division (19). In our laboratory, we identified ATAD3A as a specific target for the Ca2+/Zn2+-binding S100B protein (B. Gilquin et al., unpublished data). We here show that ATAD3A is anchored into the mitochondrial IM at contact sites with the OM. The N-terminal domain of ATAD3A interacts with the inner surface of the OM and its C-terminal AAA ATPase domain localizes in a specific matrix compartment. Thanks to its simultaneous interaction with two membranes, ATAD3A regulates mitochondrial dynamics at the interface between the IMs and OMs and controls diverse cell responses ranging from cell growth, channeling of cholesterol, and mitochondrial fission.  相似文献   
787.
BACKGROUND:The COVID-19 pandemic has exacerbated disparities in poverty and illness for people in vulnerable circumstances in ethnocultural communities. We sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform intersectoral advocacy and community action.METHODS:The Illuminate Project used participatory action research, with cultural health brokers as peer researchers, from Sept. 21 to Dec. 31, 2020, in Edmonton, Alberta. Twenty-one peer researchers collected narratives from members of ethnocultural communities and self-interpreted them as they entered the narratives into the SenseMaker platform, a mixed-method data collection tool. The entire research team analyzed real-time, aggregate, quantitative and qualitative data to identify emerging thematic domains, then visualized these domains with social network analysis.RESULTS:Brokers serving diverse communities collected 773 narratives. Identified domains illuminate the evolving and entangled impacts of COVID-19 including the following: COVID-19 prevention and management; care of acute, chronic and serious illnesses other than COVID-19; maternal care; mental health and triggers of past trauma; financial insecurity; impact on children and youth and seniors; and legal concerns. We identified that community social capital and cultural brokering are key assets that facilitate access to formal health and social system supports.INTERPRETATION:The Illuminate Project has illustrated the entangled, systemic issues that result in poor health among vulnerable members of ethnocultural communities, and the exacerbating effects of COVID-19, which also increased barriers to mitigation. Cultural brokering and community social capital are key supports for people during the COVID-19 pandemic. These findings can inform policy to reduce harm and support community resiliency.

Mahatma Gandhi observed that “the true measure of any society can be found in how it treats its most vulnerable members.” Ethnocultural communities, defined by their unique shared characteristics (e.g., cultural traditions, language, country of origin),1 face greater challenges and have higher rates of poverty and illness than the general Canadian population. Migration results in conditions that affect all social determinants of health and disproportionally affect health outcomes, herein referred to as vulnerable circumstances.2,3 The emergence of major outbreaks of SARS-CoV-2 infections in ethnocultural communities highlights both the vulnerable circumstances of these communities and the disparities they face in accessing high-quality, culturally appropriate information and support.47 Studies have shown substantial variation in deaths attributed to COVID-19 based on factors such as age, sex, ethnicity, length of time in Canada, income and education.811 However, given the well-known gap in reporting comprehensive COVID-19 data in relation to race and ethnicity, efforts to measure its impact are hampered.812 There is an urgent need to understand the evolving challenges of COVID-19 to inform action and public policy that can mitigate these challenges.To understand evolving situations of complexity and crisis, sensemaking, defined as “a continuous process to establish situational awareness,”13 is a crucial undertaking.14 Using participatory action research,1518 we sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform broader national efforts to migitate the impacts of COVID-19. Particularly, we sought to understand how the challenges of COVID-19 are entangled with contextual factors at multiple levels, how families and communities are leveraging strengths and social capital to adapt, and the role of cultural brokers in managing the crisis.  相似文献   
788.
Previous work on human NK1 (hNK1) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural–activity-relationship studies on simple α- and β-substituted compounds of this series provided several potent and bioavailable hNK1 antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.1 and 24 h with ID50’s of less than 1 mpk. One particular α-substituted compound (2b) had an excellent pharmacokinetic profile across preclinical species with reasonable in vivo functional activity and minimal ancillary activity.  相似文献   
789.
Consistent individual differences in behaviour, aka personality, pose several evolutionary questions. For example, it is difficult to explain within-individual consistency in behaviour because behavioural plasticity is often advantageous. In addition, selection erodes heritable behavioural variation that is related to fitness, therefore we wish to know the mechanisms that can maintain between-individual variation in behaviour. In this paper, we argue that whole genome expression data can reveal new insights into the proximate mechanisms underlying personality, as well as its evolutionary consequences. After introducing the basics of whole genome expression analysis, we show how whole genome expression data can be used to understand whether behaviours in different contexts are affected by the same molecular mechanisms. We suggest strategies for using the power of genomics to understand what maintains behavioural variation, to study the evolution of behavioural correlations and to compare personality traits across diverse organisms.  相似文献   
790.
A hit optimization procedure based on isosteric and bioisosteric replacement of decorating groups at both the N1 and the C5 phenyl rings of 1,5-diarylpyrroles led to identification of 4-((1-(4-fluorophenyl)-2-methyl-5-(4-(methylthio)phenyl)-1H-pyrrol-3-yl)methyl)thiomorpholine that is characterized by a very high activity toward both Mycobacterium tuberculosis 103471 and H37Rv strains (MIC values of 0.125μg/mL), and a safe profile in terms of cytotoxicity (CC(50) of >128μg/mL) and protection index (>1000). Antitubercular activity and protection index of the new compound are comparable to those found for the current antitubercular drugs streptomycin and rifampin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号