首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2364篇
  免费   129篇
  国内免费   3篇
  2496篇
  2024年   1篇
  2023年   18篇
  2022年   33篇
  2021年   77篇
  2020年   36篇
  2019年   58篇
  2018年   50篇
  2017年   48篇
  2016年   68篇
  2015年   118篇
  2014年   136篇
  2013年   207篇
  2012年   236篇
  2011年   196篇
  2010年   129篇
  2009年   122篇
  2008年   132篇
  2007年   173篇
  2006年   122篇
  2005年   121篇
  2004年   113篇
  2003年   88篇
  2002年   73篇
  2001年   13篇
  2000年   13篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   16篇
  1995年   12篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
  1967年   2篇
  1956年   1篇
排序方式: 共有2496条查询结果,搜索用时 15 毫秒
941.
942.
A systematic study on the use of Philippine tung (Reutealis trisperma) seed as a substrate for the cultivation of black soldier fly larvae (Hermetia illucens) was performed. The characteristics of Reutealis trisperma seed from two different locations: West Java and Papua, were determined. The seed has a relatively high oil (37.6–39.2%, dry weight) and protein content (14.9–28.2%, dry weight). The effect of cake content in the substrate (0–20%, wet weight), moisture content in the substrate (50–70%, wet weight), feeding rate (50–100?mg/larva/d), lighting condition (dark-light) and substrate depth in a rearing container (4–10?cm) was performed. An optimum prepupal biomass productivity of 123.4?g/m2/d was obtained (20%, wet weight of cake content in the substrate, 60%, wet weight of moisture content in the substrate, 100?mg/larva/d, dark, 6?cm substrate depth). The protein and oil content of the biomass were also determined to evaluate the effect of Reutealis trisperma seed as a substrate for the cultivation of black soldier fly larvae to produce protein and oil-rich biomass. The oil content in the biomass was also extracted and the fatty acid composition was identified. The prepupal biomass has a relatively high amount of protein (45%, dry weight) and oil content (26.6%, dry weight) and is suitable for cattle feed application.  相似文献   
943.
944.
Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches.  相似文献   
945.
BackgroundInfertility is a public health disorder affecting 10% of the population worldwide. Research on the impact of body mass index (BMI) on male fertility is very limited as compared to the multiple studies evaluating the impact of overweight in women's fertility. Although 25%-30% of the cases of couples consulting for infertility are attributable to male factors, studies evaluating the association between semen parameters and BMI are controversial.ObjectiveTo assess the impact of BMI on semen parameters in a selected group of men with unexplained infertility.MethodA retrospective analysis of 168 patients during the 2008-2010 period. They all had at least one semen analysis and related studies to rule out known causes of infertility. Median age of patients was 35 years (22-55), and they were divided into three groups: normal weight (BMI: 20-24.9 kg/m2), overweight (BMI 25-29.9 kg/m2), and obese (BMI ≥ 30 kg/m2).ResultsThere were no significant differences in semen parameters evaluated between the three groups, and no significant correlation was found between the same parameters and BMI.ConclusionsThere was no significant association between BMI and conventional semen parameters, but we cannot exclude an impairment in other semen parameters that are not routinely assessed, which could result in a lower potential fertility in these individuals.  相似文献   
946.
Devil's Claw (Harpagophytum procumbens) a plant native to Southern Africa, has historically been used in traditional medicine to treat a wide range of diseases and currently is widely employed as anti-inflammatory and pain-relieving natural remedy in Europe and other parts of the world.Aim of the studyLittle is known about possible herb-drug interactions arising from effects of Devil's Claw on the major drug metabolizing enzymes or transporters. This study evaluated in vitro the effects of Devil's Claw on the multidrug transporter ABCB1/P-glycoprotein.Materials and methodsThe effects of three commercially available Devil's Claw preparations and that of pure harpagoside were studied in the human kidney (HK-2) proximal tubule cell line, constitutively expressing ABCB1/P-glycoprotein (P-gp). Pgp activity and expression were tested by the calcein-AM test and by Western blotting, respectively.ResultsCommercial preparations inhibited P-gp activity, even if to a different extent, while pure harpagoside was almost ineffective. In cells cultured for three days in the presence of Devil's Claw preparations or pure harpagoside, a dose-dependent P-gp upregulation was found.ConclusionsOur results demonstrate for the first time that Devil's Claw may interact with the multidrug transporter ABCB1/P-gp, the effect not appearing strictly related to the harpagoside relative content. Modulation of both P-gp activity and P-gp expression by Devil's Claw raise the possibility of herb-drug interactions, to be further explored in depth.  相似文献   
947.

Background

The present work aims at determining HCV genotypes in patients with chronic HCV infection, in Gaza strip, Palestine. The most common risk factors for HCV transmission were also evaluated in conjunction with the genotyping data.

Results

The study shows that there are only two major genotypes of HCV in Gaza Strip: Genotype 1 (subtypes 1a and 1b) collectively contribute to 28.3% of the cases, and genotype 4 (subtypes 4a and 4c/d) collectively contribute to 64.1% of the cases. Mixed infection with the two genotypes was also present among 7.6% of the cases. In this study a statistically significant relationship was established between the distribution of these genotypes and the patients' living place, traveling history, history of blood transfusion and history of surgical operations.

Conclusion

The present study is the first to link HCV genotyping in Gaza strip with its possible roots of transmission. Traveling to endemic countries, especially Egypt; blood transfusion and surgical operations are major roots of HCV infection in Gaza strip. The results indicate that iatrogenic and nosocomial procedures may be responsible for the majority of HCV infections in Gaza strip.  相似文献   
948.
In mammals, xylose is found as the first sugar residue of the tetrasaccharide GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, initiating the formation of the glycosaminoglycans heparin/heparan sulfate and chondroitin/dermatan sulfate. It is also found in the trisaccharide Xylα1-3Xylα1-3Glcβ1-O-Ser on epidermal growth factor repeats of proteins, such as Notch. UDP-xylose synthase (UXS), which catalyzes the formation of the UDP-xylose substrate for the different xylosyltransferases through decarboxylation of UDP-glucuronic acid, resides in the endoplasmic reticulum and/or Golgi lumen. Since xylosylation takes place in these organelles, no obvious requirement exists for membrane transport of UDP-xylose. However, UDP-xylose transport across isolated Golgi membranes has been documented, and we recently succeeded with the cloning of a human UDP-xylose transporter (SLC25B4). Here we provide new evidence for a functional role of UDP-xylose transport by characterization of a new Chinese hamster ovary cell mutant, designated pgsI-208, that lacks UXS activity. The mutant fails to initiate glycosaminoglycan synthesis and is not capable of xylosylating Notch. Complementation was achieved by expression of a cytoplasmic variant of UXS, which proves the existence of a functional Golgi UDP-xylose transporter. A ∼200 fold increase of UDP-glucuronic acid occurred in pgsI-208 cells, demonstrating a lack of UDP-xylose-mediated control of the cytoplasmically localized UDP-glucose dehydrogenase in the mutant. The data presented in this study suggest the bidirectional transport of UDP-xylose across endoplasmic reticulum/Golgi membranes and its role in controlling homeostasis of UDP-glucuronic acid and UDP-xylose production.Xylose is only known to occur in two different mammalian glycans. First, xylose is the starting sugar residue of the common tetrasaccharide, GlcAβ1,3Galβ1,3Galβ1,4Xylβ1-O-Ser, attached to proteoglycan core proteins to initiate the biosynthesis of glycosaminoglycans (GAGs)2 (1). Second, xylose is found in the trisaccharide Xylα1,3Xylα1,3Glcβ1-O-Ser in epidermal growth factor (EGF)-like repeats of proteins, such as blood coagulation factors VII and IX (2) and Notch (3) (Fig. 1). Two variants of O-xylosyltransferases (XylT1 and XylT2) are responsible for the initiation of glycosaminoglycan biosynthesis, which differ in terms of acceptor specificity and tissue distribution (4-7), and two different enzymatic activities have been identified that catalyze xylosylation of O-glucose residues added to EGF repeats (8-10). On Notch, O-glucose occurs on EGF repeats in a similar fashion as O-fucose, which modifications have been shown to influence ligand-mediated Notch signaling (11-16). Recently, rumi, the gene encoding the Notch O-glucosyltransferase in Drosophila, has been identified, and inactivation of the gene was found to cause a temperature-sensitive Notch phenotype (17). Although this finding clearly demonstrated that O-glucosylation is essential for Notch signaling, the importance of xylosylation for Notch functions remains ambiguous.Open in a separate windowFIGURE 1.UDP-xylose metabolism in mammalian cells. A, UDP-Xyl is synthesized in two steps from UDP-Glc by the enzymes UGDH, forming UDP-GlcA, and UXS, also referred to as UDP-glucuronic acid decarboxylase. UGDH is inhibited by the product of the second enzyme, UDP-Xyl (42). B, in mammals, UDP-Xyl is synthesized within the lumen of the ER/Golgi, where it is substrate for different xylosyltransferases incorporating xylose in the glycosaminoglycan core (XylT1 and XylT2) or in O-glucose-linked glycans. The nucleotide sugar transporter SLC35D1 (52) has been shown to transport UDP-GlcA over the ER membrane and SLC35B4 (29) to transport UDP-Xyl over the Golgi membrane. The function of this latter transporter is unclear.Several different Chinese hamster ovary (CHO) cell lines with defects in GAG biosynthesis have been isolated by screening for reduced incorporation of sulfate (18) and reduced binding of fibroblast growth factor 2 (FGF-2) (19, 20) and by direct selection with FGF-2 conjugated to the plant cytotoxin saporin (21). Isolated cells (called pgs, for proteoglycan synthesis mutants) (21) exhibited defects in various stages of GAG biosynthesis, ranging from the initiating xylosyltransferase to specific sulfation reactions (18, 19, 21-25). Mutants that affect overall GAG biosynthesis were shown to have a defect in the assembly of the common core tetrasaccharide. Interestingly, these latter mutants could be separated into clones in which GAG biosynthesis can be restored by the external addition of xylosides as artificial primers and those that cannot (18). The two mutants belonging to the first group are pgsA-745 and pgsB-761. Although pgs-745 is defective in XylT2 (4-6, 18), pgsB-761 exhibits a defect in galactosyltransferase I (B4GalT7), the enzyme that catalyzes the first step in the elongation of the xylosylated protein (25 (see Fig. 1B). Restoration of GAG biosynthesis in the latter mutant presumably occurs through a second β1-4-galactosyltransferase, able to act on xylosides when provided at high concentration but not on the endogenous protein-linked xylose.Here we describe the isolation of a third CHO cell line (pgsI-208) with the xyloside-correctable phenotype. The mutant is deficient in UDP-xylose synthase (UXS), also known as UDP-glucuronic acid decarboxylase. This enzyme catalyzes the synthesis of UDP-Xyl, the common donor substrate for the different xylosyltransferases, by decarboxylation of UDP-glucuronic acid. Importantly, UXS in the animal cell is localized in the lumen of the ER and/or Golgi (26-28), superseding at first sight the need for the Golgi UDP-xylose transporter, which has been recently cloned and characterized (29). Using this cell variant, experiments were designed that establish the functional significance of UDP-Xyl transport with respect to UDP-glucuronic acid production and xylosylation.  相似文献   
949.
Bacterial type 4 pili (T4P) are long flexible fibers involved in adhesion, DNA uptake, phage transduction, aggregation and a flagella-independent movement called “twitching motility”. T4P comprise thousands of copies of the major pilin subunit, which is initially inserted in the plasma membrane, processed and assembled into dynamic helical filaments. T4P are crucial for host colonization and virulence of many Gram-negative bacteria. In enterohemorrhagic Escherichia coli the T4P, called hemorrhagic coli pili (HCP) promote cell adhesion, motility, biofilm formation and signaling. To understand the mechanism of HCP assembly and function, we analyzed the structure of the major subunit prepilin peptidase-dependent protein D (PpdD) (also called HcpA), a 15 kDa pilin with two potential disulfide bonds. Here we present the 1H, 15N and 13C backbone and side chain resonance assignments of the C-terminal globular domain of PpdD as a first step to its structural determination.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号