首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2443篇
  免费   88篇
  国内免费   3篇
  2534篇
  2024年   2篇
  2023年   19篇
  2022年   34篇
  2021年   78篇
  2020年   39篇
  2019年   59篇
  2018年   53篇
  2017年   50篇
  2016年   70篇
  2015年   123篇
  2014年   138篇
  2013年   209篇
  2012年   241篇
  2011年   200篇
  2010年   129篇
  2009年   122篇
  2008年   132篇
  2007年   175篇
  2006年   122篇
  2005年   121篇
  2004年   113篇
  2003年   88篇
  2002年   74篇
  2001年   14篇
  2000年   13篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   17篇
  1995年   12篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
  1967年   2篇
  1956年   1篇
排序方式: 共有2534条查询结果,搜索用时 15 毫秒
61.

Background  

Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS?.  相似文献   
62.
We showed that cyclic strain (CS) of osteoblastic cells induced tyrosine phosphorylation of two homologous tyrosine kinases FAK and PYK2, and of two homologous adaptor proteins paxillin and Hic5, with similar kinetics. Immunostaining showed that all four proteins were localized to focal contacts in controls. In contrast, the dynamics of their subcellular localization observed after CS differed. While FAK and paxillin remained at the focal contact, Hic-5 and PYK2 translocated outside ventral focal contacts as early as 30 min after CS and were sequestered by the cytoskeleton. Co-immunoprecipitation showed that the association of PYK2/Hic-5 and PYK2/FAK increased with time after strain while that of paxillin and Hic-5 decreased. Altogether these results suggested that CS regulates focal contact activity in osteoblasts by modulating PYK2-containing complexes in particular by shuttling out of the focal contact the adaptor Hic-5 and favoring the anchorage of FAK within contacts.  相似文献   
63.
Hemizygous TNFΔARE/+ mice are a murine model for chronic inflammation. We utilized these animals to study iron-kinetics and corresponding protein expression in an iron-deficient and iron-adequate setting. 59Fe-absorption was determined in ligated duodenal loops in vivo. Whole body distribution of i.v. injected 59Fe was analysed, and the organ specific expression of ferroportin, transferrin receptor-1, hepcidin and duodenal DMT-1 was quantified by real-time PCR and Western blotting.Duodenal 59Fe-lumen-to-body transport was not affected by the genotype. Duodenal 59Fe-retention was increased in TNFΔARE/+ mice, suggesting higher 59Fe-losses with defoliated enterocytes. Iron-deficiency increased duodenal 59Fe-lumen-to-body transport, and higher duodenal 59Fe-tissue retention went along with higher duodenal DMT-1, ferroportin, and liver hepcidin expression. TNFΔARE/+ mice significantly increase their 59Fe-content in inflamed joints and ilea, and correspondingly reduce splenic 59Fe-content. Leukocyte infiltrations in the joints suggest a substantial shift of iron-loaded RES cells to inflamed tissues as the underlying mechanism. This finding was paralleled by increased non-haem iron content in joints and reduced haemoglobin and haematocrit concentrations in TNFΔARE/+ mice.In conclusion, erythropoiesis in inflamed TNFΔARE/+ mice could be iron-limited due to losses with exfoliated iron-loaded enterocytes and/or to increased iron-retention in RES cells that shift from the spleen to inflamed tissues.  相似文献   
64.
Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a (2)H(2)O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. (2)H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with (2)H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions.  相似文献   
65.
Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI5–24). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His6 tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.  相似文献   
66.
The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans.  相似文献   
67.
The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.  相似文献   
68.
Several diphenyl ether herbicides, such as acifluorfen methyl, have been previously shown to cause large accumulations of the heme and chlorophyll precursor, protoporphyrin, in plants. Lightinduced herbicidal damage is mediated by the photoactive porphyrin. Here we investigate whether diphenyl ether herbicides can affect porphyrin synthesis in rat and chick hepatocytes. In rat hepatocyte cultures, protoporphyrin, as well as coproporphyrin, accumulated after treatment with acifluorfen or acifluorfen methyl. Combination of acifluorfen methyl with an esterase inhibitor to prevent the conversion of acifluorfen methyl to acifluorfen resulted in a greater accumulation of porphyrins than caused by acifluorfen methyl or acifluorfen alone. In vitro enzyme studies of hepatic mitochondria isolated from rat and chick embryos demonstrated that protopor-phyrinogen oxidase, the penultimate enzyme of heme biosynthesis, was inhibited by low concentrations of acifluorfen, nitrofen, or acifluorfen methyl with the latter being the most potent inhibitor. These findings indicate that diphenyl ether treatment can cause protoporphyrin accumulation in rat hepatocyte cultures and suggest that this accumulation was associated with the inhibition of protoporphyrinogen oxidase. In cultured chick embryo hepatocytes, treatment with acifluorfen methyl plus an esterase inhibitor caused massive accumulation of uroporphyrin rather than protoporphyrin or coproporphyrin. Specific isozymes of cytochrome P450 were also induced in chick embryo hepatocytes. These effects were not observed in the absence of an esterase inhibitor. These results suggest that diphenyl ether herbicides can cause uroporphyrin accumulation similar to that induced by other cytochrome P450-inducing chemicals such as polyhalogenated aromatic hydrocarbons in the chick hepatocyte system.  相似文献   
69.
Endocrine disruptors are chemicals able to induce adverse effects into wildlife and humans owing to their ability of interfering with the endocrine system. Bisphenol A (BPA) has been chosen as model of endocrine disruptors. To reduce the BPA pollution in waters we proposed the employment of the process of thermodialysis. Two different catalytic membranes have been prepared by covalently immobilizing laccase (from Trametes versicolor) by means of a diazotation process or tyrosinase (from mushroom) by condensation. The support was a nylon membrane. The bioremediation power of both catalytic membranes has been analysed under isothermal and non-isothermal conditions.The advantages in using non-isothermal bioreactors were discussed in terms of reduction of the bioremediation times.  相似文献   
70.
Preparation and properties of plasticized poly(lactic acid) films   总被引:2,自引:0,他引:2  
Poly(lactic acid), PLA, was blended with monomeric and oligomeric plasticizers in order to enhance its flexibility and thereby overcome its inherent problem of brittleness. Differential scanning calorimetry, dynamic mechanical analysis, transmission electron microscopy, and tensile testing were used to investigate the properties of the blends. Monomeric plasticizers, such as tributyl citrate, TbC, and diethyl bishydroxymethyl malonate, DBM, drastically decreased the T(g) of PLA, but the blends showed no morphological stability over time since rapid cold crystallization caused a size reduction of the amorphous domains in PLA. Consequently, the ability of PLA to accommodate the plasticizer diminished with the increase in crystallinity and migration of the plasticizer occurred. Increasing the molecular weight of the plasticizers by synthesizing oligoesters and oligoesteramides resulted in blends that displayed T(g) depressions slightly smaller than with the monomeric plasticizers. The compatibility with PLA was dependent on the molecular weight of the oligomers and on the presence or not of polar amide groups that were able to positively interact with the PLA chains. Aging the materials at ambient temperature revealed that the enhanced flexibility as well as the morphological stability of the films plasticized with the oligomers could be maintained as a result of the higher molecular weight and the polar interactions with PLA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号