首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   131篇
  国内免费   3篇
  2496篇
  2024年   1篇
  2023年   18篇
  2022年   33篇
  2021年   77篇
  2020年   36篇
  2019年   58篇
  2018年   50篇
  2017年   48篇
  2016年   68篇
  2015年   118篇
  2014年   136篇
  2013年   207篇
  2012年   236篇
  2011年   196篇
  2010年   129篇
  2009年   122篇
  2008年   132篇
  2007年   173篇
  2006年   122篇
  2005年   121篇
  2004年   113篇
  2003年   88篇
  2002年   73篇
  2001年   13篇
  2000年   13篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   16篇
  1995年   12篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
  1967年   2篇
  1956年   1篇
排序方式: 共有2496条查询结果,搜索用时 15 毫秒
21.
22.
Membrane‐less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse‐specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long‐distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.  相似文献   
23.
Astrocytes have been shown to release factors that have promoting or inhibiting effects on neuronal development. However, mechanisms controlling the release of such factors from astrocytes are not well established. Astrocytes express muscarinic receptors whose activation stimulates a robust intracellular signaling, although the role of these receptors in glial cells is not well understood. Acetylcholine and acetylcholine receptors are present in the brain before synaptogenesis occurs and are believed to be involved in neuronal maturation. The present study was undertaken to investigate whether stimulation of muscarinic receptors in astrocytes would modulate neurite outgrowth in hippocampal neurons. Rat hippocampal neurons, co-cultured with rat cortical astrocytes previously exposed to the cholinergic agonist carbachol, displayed longer neurites. The effect of carbachol in astrocytes was due to the activation of M3 muscarinic receptors. Exposure of astrocytes to carbachol increased the expression of the extracellular matrix proteins fibronectin and laminin-1 in these cells. This effect was mediated in part by an increase in laminin-1 and fibronectin mRNA levels and in part by the up-regulation of the production and release of plasminogen activator inhibitor-1, an inhibitor of the proteolytic degradation of the extracellular matrix. The inhibition of fibronectin activity strongly reduced the effect of carbachol on the elongation of all the neurites, whereas inhibition of laminin-1 activity reduced the elongation of minor neurites only. Plasminogen activator inhibitor-1 also induced neurite elongation through a direct effect on neurons. Taken together, these results demonstrate that cholinergic muscarinic stimulation of astrocytes induces the release of permissive factors that accelerate neuronal development.  相似文献   
24.
25.
We have analyzed the ranging patterns of the Mimikire group (M group) of chimpanzees in the Mahale Mountains National Park, Tanzania. During 16 years, the chimpanzees moved over a total area of 25.2 or 27.4 km2, as estimated by the grid-cell or minimum convex polygon (MCP) methods, respectively. Annually, the M group used an average of 18.4 km2, or approximately 70 %, of the total home-range area. The chimpanzees had used 80 % of their total home range after 5 years and 95 % after 11 years. M group chimpanzees were observed more than half of the time in areas that composed only 15 % of their total home range. Thus, they typically moved over limited areas, visiting other parts of their range only occasionally. On average, the chimpanzees used 7.6 km2 (in MCP) per month. Mean monthly range size was smallest at the end of the rainy season and largest at the end of the dry season, but there was much variability from year to year. The chimpanzees used many of the same areas every year when Saba comorensis fruits were abundant between August and January. In contrast, the chimpanzees used several different areas of their range in June. Here range overlap between years was relatively small. Over the 16 years of the study we found that the M group reduced their use of the northern part of their range and increased their frequency of visits to the eastern mountainous side of their home range. Changes in home-range size correlated positively with the number of adult females but not with the number of adult males. This finding does not support a prediction of the male-defended territory model proposed for some East African chimpanzee unit-groups.  相似文献   
26.
Meiotic recombination is a critical genetic process as well as a pivotal evolutionary force. Rates of crossing over are highly variable within and between species, due to both genetic and environmental factors. Early studies in Drosophila implicated female genetic background as a major determinant of crossover rate and recent work has highlighted male genetic background as a possible mediator as well. Our study employed classical genetics to address how female and male genetic backgrounds individually and jointly affect crossover rates. We measured rates of crossing over in a 33 cM region of the Drosophila melanogaster X chromosome using a two‐step crossing scheme exploiting visible markers. In total, we measured crossover rates of 10 inbred lines in a full diallel cross. Our experimental design facilitates measuring the contributions of female genetic background, male genetic background, and female by male genetic background interaction effects on rates of crossing over in females. Our results indicate that although female genetic background significantly affects female meiotic crossover rates in Drosophila, male genetic background and the interaction of female and male genetic backgrounds have no significant effect. These findings thus suggest that male‐mediated effects are unlikely to contribute greatly to variation in recombination rates in natural populations of Drosophila.  相似文献   
27.
The evolution of genotypic diversity with population age remains poorly explored in clonal plant populations despite the potential for important shifts to occur through the course of time. Woody sprouting species are particularly under-represented in studies investigating intra-specific variations in levels of clonality from one locality to the next and through time. In this study we sought to determine the incidence and frequency of replicate genotypes in natural Populus nigra L. (Salicaceae) stands of different ages. Ten stands of this woody riparian sprouting species were selected in each of three distinct age groups (young, middle-aged and old) along a 30 km stretch of the River Garonne (south-west France). Leaf samples were collected from 15 neighbouring trees in each stand (450 samples in total) and replicate genotypes were identified using five SSR markers. Replicate genotypes were identified in two-thirds of all stands sampled (i.e. 50 of young stands, 100 of middle-aged stands and 50% of old stands). Young stands had significantly fewer replicated genotypes than middle-aged or old stands, while middle-aged stands had the greatest number of replicated genotypes. Replicate genotypes were most often found to occur as nearest neighbours and formed relatively small, discrete units (i.e. 2–4 trees growing in close proximity to one another). This suggests that asexual regeneration frequently occurs through flood-training in this species, although asexual regeneration from translocated fragments also evidently occurs as evidenced by 11 cases of replicate genotypes occurring in widely separated stands (up to 19 km apart). The results of this study highlight the need for a hierarchical sampling strategy in space and across age groups for an accureate understanding of the genotypic structure of woody sprouting species populations. Conservation and management of effective population sizes will benefit from better insight into not only spatial, but also temporal variations in levels of genotypic diversity.Co-ordinating editor: J. Tuomi  相似文献   
28.
The renal-specific Na-K-2Cl co-transporter, NKCC2, plays a pivotal role in regulating body salt levels and blood pressure. NKCC2 mutations lead to type I Bartter syndrome, a life-threatening kidney disease. Regulation of NKCC2 trafficking behavior serves as a major mechanism in controlling NKCC2 activity across the plasma membrane. However, the identities of the protein partners involved in cell surface targeting of NKCC2 are largely unknown. To gain insight into these processes, we used a yeast two-hybrid system to screen a kidney cDNA library for proteins that interact with the NKCC2 C terminus. One binding partner we identified was SCAMP2 (secretory carrier membrane protein 2). Microscopic confocal imaging and co-immunoprecipitation assays confirmed NKCC2-SCAMP2 interaction in renal cells. SCAMP2 associated also with the structurally related co-transporter NCC, suggesting that the interaction with SCAMP2 is a common feature of sodium-dependent chloride co-transporters. Heterologous expression of SCAMP2 specifically decreased cell surface abundance as well as transport activity of NKCC2 across the plasma membrane. Co-immunolocalization experiments revealed that intracellularly retained NKCC2 co-localizes with SCAMP2 in recycling endosomes. The rate of NKCC2 endocytic retrieval, assessed by the sodium 2-mercaptoethane sulfonate cleavage assay, was not affected by SCAMP2. The surface-biotinylatable fraction of newly inserted NKCC2 in the plasma membrane was reduced by SCAMP2, demonstrating that SCAMP2-induced decrease in surface NKCC2 is due to decreased exocytotic trafficking. Finally, a single amino acid mutation, cysteine 201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, which is believed to regulate exocytosis, abolished SCAMP2-mediated down-regulation of the co-transporter. Taken together, these data are consistent with a model whereby SCAMP2 regulates NKCC2 transit through recycling endosomes and limits the cell surface targeting of the co-transporter by interfering with its exocytotic trafficking.  相似文献   
29.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   
30.
Bacteria use diverse signaling pathways to control gene expression in response to external stimuli. In Gram-negative bacteria, the binding of a nutrient is sensed by an outer membrane transporter. This signal is then transmitted to an antisigma factor and subsequently to the cytoplasm where an ECF sigma factor induces expression of genes related to the acquisition of this nutrient. The molecular interactions involved in this transmembrane signaling are poorly understood and structural data on this family of antisigma factor are rare. Here, we present the first structural study of the periplasmic domain of an antisigma factor and its interaction with the transporter. The study concerns the signaling in the heme acquisition system (Has) of Serratia marcescens. Our data support unprecedented partially disordered periplasmic domain of an anti-sigma factor HasS in contact with a membrane-mimicking environment. We solved the 3D structure of the signaling domain of HasR transporter and identified the residues at the HasS−HasR interface. Their conservation in several bacteria suggests wider significance of the proposed model for the understanding of bacterial transmembrane signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号