首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   10篇
  2013年   5篇
  2012年   13篇
  2011年   18篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有150条查询结果,搜索用时 46 毫秒
31.
Recent data on the involvement of miRNA and circulating tumor-derived DNA in regulation of tumorigenesis showed a great prospect for these molecules as a novel class of therapeutic targets and gave a new start for the study of enzymes cleaving nucleic acids as potential antitumor and antimetastatic agents. In the present paper using two murine tumor models with pulmonary or liver metastases we studied the antimetastatic potential of RNase A and DNase I and performed a search for possible molecular targets of the enzymes. Herein, we show for the first time that daily administration of ultralow doses of RNase A (0.5-50 μg/kg) and DNase I (0.02-2.3 mg/kg) inhibits the development of metastasis to 60-90% and RNase A exerts 30% retardation of tumor growth. Remarkably, the increase in RNase A dose from 50 μg/kg to 10 mg/kg leads to a disappearance of antitumor and antimetastatic effects. Simultaneous treatment of tumor-bearing animals with RNase A and DNase I leads to an additive effect and results in almost total absence of metastases. The use of RNase A as an adjuvant in conjunction with conventional cytostatic cyclophosphamide results in a reliable enhancement of antitumor and antimetastatic effect of the therapy compared with the use of these agents individually. The search for possible molecular mechanism of antimetastatic effect of nucleases showed that daily administration of the enzymes reduced the pathologically increased level of extracellular nucleic acids and increased nuclease activity of the blood plasma of tumor-bearing mice back to the level of healthy animals. Thus, we unequivocally show that the proposed protocol of treatment of tumor-bearing animals with RNase A and DNase I has a general systemic and immunomodulatory effect, leads to a drastic suppression of metastasis development, and in perspective may become an effective component of intensive complex therapy of cancer.  相似文献   
32.
33.

Background

The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging.

Scope of review

One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules.

Major conclusions and general significance

Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   
34.
35.
NL Corrales  K Mrasek  M Voigt  T Liehr  N Kosyakova 《Gene》2012,506(2):377-379
Results from the analysis of copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitor cell lines (hiPSC and hESC-derived NPC) are presented. Two different types of CNVs were detected: a) CNVs inherited from the original source of pluripotent cells (hESC and hiPSC) and b) CNVs detected either in the original source of pluripotent cells or in the derived NPC cell lines but not in both at the same time. Our data suggest that submicroscopic chromosomal changes happened during culture and manipulation of cells and those differentiation procedures could result in gains and losses of genomic regions in pluripotent cell-derived neuroprogenitors. Overall, the results indicate that even chromosomally stable stem cell lines would need to be analyzed in detail by high resolution methodologies before their clinical use.  相似文献   
36.
The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton.  相似文献   
37.
2‐Hexadecenal (2HD) formation in the organism occurs via irreversible enzymatic degradation of sphingosine‐1‐phosphate or nonenzymatic γ‐, UV‐, or HOCl‐induced destruction of a number of sphingolipids including S1P. The current research focuses on the study of 2HD effects on C6 glioma cells growth. The results obtained show that 2HD causes a dose‐dependent decrease in proliferative and mitotic indices. The change in the mitotic index is due to the redistribution of cells in the different phases of mitosis. These processes are accompanied by cytoskeleton rearrangement and changes in cell morphology, which are expressed in F‐actin redistribution, change in the number and type of filopodia and fibrils, leading to cell shape changes, decrease in intercellular contacts and monolayer rarefaction. Cells treatment with 2HD leads to apoptosis induction and signalling pathways modification, including activation of JNK, p38, and ERK1/2 MAPK but not PI3K. The effects observed are not related to the cytotoxicity of 2HD. Significance of the study: 2HD—an unsaturated aldehyde, which level can rise under conditions of oxidative stress as a result of nonenzymatic sphingolipids' destruction. The mechanisms of 2HD action on various cell types have not been sufficiently studied. Therefore, the study on functional role of this aldehyde in different cell types that may be its target is relevant. This study demonstrated that 2HD inhibits growth of C6 glioma cells due to modification of intracellular processes of signal transduction, cytoskeleton rearrangement, change in the mitotic regimen and apoptosis induction.  相似文献   
38.
A bacterial culture capable of utilizing products of mustard gas hydrolysis as a source of carbon was isolated from soil. This culture was tolerant to organochlorine substances in the hydrolysate. The bacterium was identified as Pseudomonas sp. The bacterium utilizes the major product of mustard gas hydrolysis, thiodiglycol, through two pathways. One involves the oxidation of the primary alcoholic groups in thiodiglycol, yielding thiodiglycolic and thioglycolic acids. The cleavage of the C-S bonds in these acids gives rise to acetate, which is then used further in the cell metabolism. The other pathway involves the cleavage of the C-S bond in the thiodiglycol molecule, yielding beta-mercaptoethanol, which is transformed by Pseudomonas sp. into thioglycolic acid. The results show the promise of this bacterium for the bioremediation of mustard gas-contaminated soils.  相似文献   
39.
The widespread use of whole genome analysis based on array comparative genomic hybridization in diagnostics and research has led to a continuously growing number of microdeletion and microduplication syndromes (MMSs) connected to certain phenotypes. These MMSs also include increasing instances in which the critical region can be reciprocally deleted or duplicated. This review catalogues the currently known MMSs and the corresponding critical regions including phenotypic consequences. Besides the pathogenic pathways leading to such rearrangements, the different detection methods and their limitations are discussed. Finally, the databases available for distinguishing between reported benign or pathogenic copy number alterations are highlighted. Overall, a review of MMSs that previously were also denoted "genomic disorders" or "contiguous gene syndromes" is given.  相似文献   
40.
Ecto-5'-nucleotidase (e-5NT) is a cell-surface located, rate-limiting enzyme in the extracellular metabolism of ATP, catalyzing the final step of the conversion of AMP to adenosine. Since this enzyme shifts the balance from pro-inflammatory ATP to anti-inflammatory adenosine, it is considered to be an important regulator of inflammation. Although up-regulation of e-5NT was repeatedly reported in several in vivo models of brain injury, the regulation of its expression and function remains largely unknown. We have studied effects of several pro-inflammatory factors, namely, bacterial endotoxin lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), glutamate (Glu) and hydrogen peroxide (H(2)O(2)) on e-5NT (i) activity, (ii) mRNA expression and (iii) membrane protein abundance in primary cultured cortical astrocytes. We are clearly able to demonstrate a stimulus-specific regulation of the e-5NT pathway. IFN-γ, LPS, Glu and H(2)O(2) decrease, while TNF-α increases e-5NT activity. The analysis of e-5NT gene expression and e-5NT membrane protein levels revealed that tested factors regulate e-5NT at different levels and by employing different mechanisms. In summary, we provide evidence that e-5NT activity is tightly regulated in a stimulus-specific manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号