首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   12篇
  2011年   16篇
  2010年   9篇
  2009年   2篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  1998年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
31.
Ecto-5'-nucleotidase (e-5NT) is a cell-surface located, rate-limiting enzyme in the extracellular metabolism of ATP, catalyzing the final step of the conversion of AMP to adenosine. Since this enzyme shifts the balance from pro-inflammatory ATP to anti-inflammatory adenosine, it is considered to be an important regulator of inflammation. Although up-regulation of e-5NT was repeatedly reported in several in vivo models of brain injury, the regulation of its expression and function remains largely unknown. We have studied effects of several pro-inflammatory factors, namely, bacterial endotoxin lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), glutamate (Glu) and hydrogen peroxide (H(2)O(2)) on e-5NT (i) activity, (ii) mRNA expression and (iii) membrane protein abundance in primary cultured cortical astrocytes. We are clearly able to demonstrate a stimulus-specific regulation of the e-5NT pathway. IFN-γ, LPS, Glu and H(2)O(2) decrease, while TNF-α increases e-5NT activity. The analysis of e-5NT gene expression and e-5NT membrane protein levels revealed that tested factors regulate e-5NT at different levels and by employing different mechanisms. In summary, we provide evidence that e-5NT activity is tightly regulated in a stimulus-specific manner.  相似文献   
32.
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.  相似文献   
33.
The discovery of copy number variations (CNV) in the human genome opened new perspectives in the study of the genetic causes of inherited disorders and the etiology of common diseases. Differently patterned instances of somatic mosaicism in CNV regions have been shown to be present in monozygotic twins and throughout different tissues within an individual. A single-cell-level investigation of CNV in different human cell types led us to uncover mitotically derived genomic mosaicism, which is stable in different cell types of one individual. A unique study of immortalized B-lymphoblastoid cell lines obtained with 20 year interval from the same two subjects shows that mitotic changes in CNV regions may happen early during embryonic development and seem to occur only once, as levels of mosaicism remained stable. This finding has the potential to change our concept of dynamic human genome variation. We propose that further genomic studies should focus on the single-cell level, to understand better the etiology and physiology of aging and diseases mediated by somatic variations.  相似文献   
34.
Somatic mosaicism is something that is observed in everyday lives of cytogeneticists. Chromosome instability is one of the leading causes of large-scale genome variation analyzable since the correct human chromosome number was established in 1956. Somatic mosaicism is also a well-known fact to be present in cases with small supernumerary marker chromosomes (sSMC), i.e. karyotypes of 47,+mar/46. In this study, the data available in the literature were collected concerning the frequency mosaicism in different subgroups of patients with sSMC. Of 3124 cases with sSMC 1626 (52%) present with somatic mosaicism. Some groups like patients with Emanuel-, cat-eye- or i(18p)- syndrome only tend rarely to develop mosaicism, while in Pallister-Killian syndrome every patient is mosaic. In general, acrocentric and non-acrocentric derived sSMCs are differently susceptible to mosaicism; non-acrocentric derived ones are hereby the less stable ones. Even though, in the overwhelming majority of the cases, somatic mosaicism does not have any detectable clinical effects, there are rare cases with altered clinical outcomes due to mosaicism. This is extremely important for prenatal genetic counseling. Overall, as mosaicism is something to be considered in at least every second sSMC case, array-CGH studies cannot be offered as a screening test to reliably detect this kind of chromosomal aberration, as low level mosaic cases and cryptic mosaics are missed by that.  相似文献   
35.
36.
37.
An alternative protocol for freeze-substitution is described. Araldite/Epon embedding medium (20% in acetone) is first used as a stabilizer (as e.g., OsO(4)) and then as embedding medium. The major components of the Araldite/Epon resin formulation react with proteins and lipids and provide for an excellent preservation and reasonable visualisation of the ultrastructure. The ultrastructural appearance can be deliberately influenced with the standard freeze-substitution procedure [Van Harreveld, A., Crowell, J., 1964. Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149, 381-386.] using OsO(4) as stabilizing agent by protocols which degrade cytoplasmic and membrane proteins. Epoxy stabilized and embedded samples may become an important tool to get information about the effects of different reagents and protocols used in freeze-substitution. We believe that an in-depth understanding of the procedures is required to correctly interpret images and to complement studies of dynamic processes by light microscopy with reliable, highly detailed ultrastructural information. The block face of epoxy stabilized samples after ultrathin sectioning is highly suited for the analysis of the ultrastructure by AFM.  相似文献   
38.
A cell model of primary macrophages isolated from the peritoneal cavity of flavivirus-susceptible and congenic resistant mice has been used to study the extent and kinetics of antiviral effects against West Nile virus upon priming with alpha/beta interferon (IFN-alpha/beta) or poly(I-C) (pIC). The pattern of flavivirus resistance expressed after priming of cells in this model was in good agreement with the pattern of flavivirus resistance described in the brains of the corresponding mouse strains. While priming with either IFN-alpha/beta or pIC completely blocked flavivirus replication in macrophages from resistant mice, it only transiently reduced flavivirus replication in macrophages from susceptible mice. It was only the combined pretreatment with IFN-alpha/beta and pIC that elicited strong antiviral responses that completely prevented flavivirus replication in macrophages from susceptible mice. Primary macrophages isolated from the blood of healthy human donors expressed a similar need for double-stranded RNA (dsRNA) cofactor in developing efficient antiviral responses against West Nile virus. These findings reveal that the inefficient IFN-alpha/beta-induced antiviral effects against flaviviruses in cells from susceptible hosts could be successfully complemented by an external dsRNA factor leading to the complete eradication of the virus. This treatment appears to compensate for the lack of an inborn resistance mechanism in cells from the susceptible host. Furthermore, it may also provide useful clues for the prevention and treatment of flavivirus infections.  相似文献   
39.
To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T(1)) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R(M)) determined from T(1) relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a cytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.  相似文献   
40.
We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling mitochondrial respiration. Conversely, transient hypoxia causes the reversible increase in the intensity of peaks assigned to cytochromes c and c1, reflecting electron stacking proximal to cytochrome oxidase due to the lack of terminal electron acceptor O2. Intensities of peaks assigned to oxy- and deoxyhemoglobin were used for the semiquantitative estimation of oMb deoxygenation that was found to be of approximately 50 under hypoxia conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号