首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   23篇
  644篇
  2023年   5篇
  2022年   15篇
  2021年   13篇
  2020年   11篇
  2019年   24篇
  2018年   11篇
  2017年   7篇
  2016年   13篇
  2015年   32篇
  2014年   34篇
  2013年   38篇
  2012年   56篇
  2011年   39篇
  2010年   19篇
  2009年   11篇
  2008年   38篇
  2007年   34篇
  2006年   35篇
  2005年   28篇
  2004年   20篇
  2003年   27篇
  2002年   21篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   5篇
  1996年   4篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
31.
OBJECTIVE: To compare 2 methods of fixation in bloody Pap smears with Carnoy's solution and 96% ethyl alcohol. STUDY DESIGN: After observation of contact bleeding, 2 samples were prepared from cervical cells with conventional Pap smear. One sample was fixed in 96% ethyl alcohol and another sample was fixed in Carnoy's solution. RESULTS: Of 450 slides, 410 were selected for study. In study of cell adequacy, diagnosis of squamous cells and glandular cells was better in Carnoy's-fixed slides. Blood contamination of slides was reduced in Carnoy's-fixed slides (13.85% vs. 49.51%), and clearance of slides was increased in Carnoy's-fixed slides. Diagnosis of inflammatory cells and pathogenic microorganisms in was increased in Carnoy's-fixed slides, but no difference was seen in diagnosis of epithelial cell and glandular cell abnormalities. CONCLUSION: Carnoy's solution can be used as an effective fixative in bloody smears in conventional Pap tests.  相似文献   
32.
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis in a dose-dependent manner in these cells (P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE2 resulted in the increased expression of the adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes. Taken together we show for the first time that 20-HETE-derived COX-2-dependent 20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC undergoing adipogenic differentiation.  相似文献   
33.
Endothelial cell transition from a differentiated, quiescent phenotype to a migratory, proliferative phenotype is essential during angiogenesis. This transition is dependent on alterations in the balanced production of stimulatory and inhibitory factors, which normally keep angiogenesis in check. Activation of MAPK/ERKs is essential for endothelial cell migration and proliferation. However, its role in regulation of endothelial cell adhesive mechanisms requires further delineation. Here, we show that sustained activation of MAPK/ERKs results in disruption of cadherin-mediated cell-cell adhesion, down-regulation of PECAM-1 expression, and enhanced cell migration in microvascular endothelial cells. Expression of a constitutively active MEK-1 in mouse brain endothelial (bEND) cells resulted in down-regulation of VE-cadherin and catenins expression concomitant with down-regulation of PECAM-1 expression. In contrast, inhibition of MEK-1 restored parental morphology, cadherin/catenins expression and localization. These data are further supported by our observation that sustained activation of MAPK/ERKs in phorbol myristate acetate incubated HUVEC lead to disruption of cadherin-mediate cell-cell interactions and enhanced capillary formation on Matrigel. Thus, sustained activation of MAPK/ERKs plays an important role in disruption of cell-cell adhesion and migration of endothelial cells.  相似文献   
34.
35.
Negative costimulatory signals mediated via cell surface molecules such as CTLA-4 and programmed death 1 (PD-1) play a critical role in down-modulating immune responses and maintaining peripheral tolerance. However, their role in alloimmune responses remains unclear. This study examined the role of these inhibitory pathways in regulating CD28-dependent and CD28-independent CD4 and CD8 alloreactive T cells in vivo. CTLA-4 blockade accelerated graft rejection in C57BL/6 wild-type recipients and in a proportion of CD4(-/-) but not CD8(-/-) recipients of BALB/c hearts. The same treatment led to prompt rejection in CD28(-/-) and a smaller proportion of CD4(-/-)CD28(-/-) mice with no effect in CD8(-/-)CD28(-/-) recipients. These results indicate that the CTLA-4:B7 pathway provides a negative signal to alloreactive CD8(+) T cells, particularly in the presence of CD28 costimulation. In contrast, PD-1 blockade led to accelerated rejection of heart allografts only in CD28(-/-) and CD8(-/-)CD28(-/-) recipients. Interestingly, PD-1 ligand (PD-L1) blockade led to accelerated rejection in wild-type mice and in all recipients lacking CD28 costimulation. This effect was accompanied by expansion of IFN-gamma-producing alloreactive T cells and enhanced generation of effector T cells in rejecting allograft recipients. Thus, the PD-1:PD-L1 pathway down-regulates alloreactive CD4 T cells, particularly in the absence of CD28 costimulation. The differential effects of PD-1 vs PD-L1 blockade support the possible existence of a new receptor other than PD-1 for negative signaling through PD-L1. Furthermore, PD-1:PD-L1 pathway can regulate alloimmune responses independent of an intact CD28/CTLA-4:B7 pathway. Harnessing physiological mechanisms that regulate alloimmunity should lead to development of novel strategies to induce durable and reproducible transplantation tolerance.  相似文献   
36.
Summary The fertilizing ability of spermatozoa from epididymal tubules maintained in organ cultures from 1 to 7 days was assessed after artificial insemination into receptive does. It was found that spermatozoa from the distal corpus which were already capable of fertilizing eggs prior to the cultures retain this ability for 1 day without addition of hormone and for 3–4 days when testosterone (0.5 g/ml) or 5-dihydrotestosterone (0.5 g/ml) is added to the culture medium. Spermatozoa from the proximal corpus which were not capable of fertilizing eggs prior to the cultures remain so after 1 day in cultures without addition of hormone. Testosterone, 5-dihydrotestosterone, 3-androstanediol, or 3-androstanediol was added to cultures of proximal corpus at a concentration of 0.5 g/ml. Only with 5-DHT is the mean percentage of fertilization significantly higher than the percentage obtained without addition of hormone. Insulin does not potentiate the effect of 5-DHT on sperm fertilizing ability. Epithelial growth factor is ineffective. Spermatozoa from the caput epididymidis kept in cultures for 1 to 4 days remain infertile. The results are discussed in light of the morphological findings presented in the preceding communication and in relation to the physiological requirement for sperm maturation in the epididymis.  相似文献   
37.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   
38.
Endothelial cells (ECs) are a source of physiologically important molecules that are synthesized and released to the blood and/or to the subendothelial extracellular matrix such as a heparan sulfate proteoglycan (HSPG) with antithrombotic properties. Previously, we have shown that heparin stimulates the synthesis and modifies the sulfation pattern of this HSPG. Here the molecular mechanisms involved in the up‐regulation of HSPG synthesis by heparin in endothelial cells were decoded. The cells were stimulated with heparin and the expression of HSPG and intracellular pathways were evaluated by a combination of methods involving confocal microscopy, flow cytometry, Western blotting analyses, and [35S]‐sulfate metabolically labeling of the cells. We observed that the up‐regulation of HSPG synthesis evoked by heparin is dependent on the interaction of heparin with integrin since RGD peptide abolishes the effect. The activation of integrin leads to tyrosine‐phosphorylation of focal adhesion‐associated proteins such as FAK, Src, and paxillin. In addition, heparin induces ERK1/2 phosphorylation and inhibitors of Ras and MEK decreased heparin‐dependent HSPG synthesis. Moreover, heparin also induced intracellular Ca2+ release, PLCγ1 (phospholipase Cγ1) and CaMKII (calcium calmodulin kinase II) activation, as well as an increase in nitric oxide (NO) production. Finally, an intracellular Ca2+ chelator, Ca2+ signaling inhibitors, and an endothelial NO synthase inhibitor were all able to abolish the effect in heparan sulfate synthesis. In conclusion, the heparin‐induced up‐regulation of HSPG expression is associated with the phosphorylation of focal adhesion proteins and Ras/Raf/MEK/ERK MAP and Ca2+/NO pathways. J. Cell. Physiol. 227: 2740–2749, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
39.
The effects of NaCl stress on the activity of anti-oxidant enzymes (superoxide dismutase, catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR)), anti-oxidant molecules (ascorbate and glutathione), and parameters of oxidative stress (malondialdehyde (MDA), electrolyte leakage, and H2O2 concentrations) were investigated in Cakile maritima, a halophyte frequent along the Tunisian seashore. Seedlings were grown in the presence of salt (100, 200, and 400 mmol/L NaCl). Plants were harvested periodically over 20 days. Growth was maximal in the presence of 0-100 mmol/L NaCl. At 400 mmol/L NaCl, growth decreased significantly. The salt tolerance of C. maritima, at moderate salinities, was associated with the lowest values of the parameters indicative of oxidative stress, namely the highest activities of POD, CAT, APX, DHAR, and GR and high tissue content of ascorbate and glutathione. However, prolonged exposure to high salinity resulted in a decrease in anti-oxidant activities and high MDA content, electrolyte leakage, and H2O2 concentrations. These results suggest that anti-oxidant systems participate in the tolerance of C. maritima to moderate salinities.  相似文献   
40.
In the present research, merwinite (M) scaffolds with and without nano‐titanium dioxide (titania) were synthesized by water‐based freeze casting method. Two different amounts (7.5 and 10 wt%) of n‐TiO2 were added to M scaffolds. They were sintered at temperature of 1573.15°K and at cooling rate of 4°K/min. The changes in physical and mechanical properties were investigated. The results showed that although M and M containing 7.5 wt% n‐TiO2 (MT7.5) scaffolds had approximately the same microstructures in terms of pore size and wall thickness, these factors were different for sample MT10. In overall, the porosity, volume and linear shrinkage were decreased by adding different weight ratios of n‐TiO2 into the M structure. According to the obtained mechanical results, the optimum mechanical performance was related to the sample MT7.5 (E = 51 MPa and σ = 2 MPa) with respect to the other samples, i.e.: M (E = 47 MPa and σ = 1.8 MPa) and MT10 (E = 32 MPa and σ = 1.4 MPa). The acellular in vitro bioactivity experiment confirmed apatite formation on the surfaces of all samples for various periods of soaking time. Based on cell study, the sample which possessed favorable mechanical behavior (MT7.5) supported attachment and proliferation of osteoblastic cells. These results revealed that the MT7.5 scaffold with improved mechanical and biological properties could have a potential to be used in bone substitute. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:550–556, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号