首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   17篇
  2023年   3篇
  2022年   13篇
  2021年   25篇
  2020年   8篇
  2019年   15篇
  2018年   12篇
  2017年   7篇
  2016年   9篇
  2015年   18篇
  2014年   16篇
  2013年   33篇
  2012年   29篇
  2011年   32篇
  2010年   17篇
  2009年   11篇
  2008年   12篇
  2007年   17篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   16篇
  2002年   12篇
  2001年   6篇
  2000年   1篇
  1998年   2篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有360条查询结果,搜索用时 31 毫秒
31.
32.
The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.  相似文献   
33.
Efficacy of proteins can be enhanced by using polyethylene glycol (PEG) conjugation (PEGylation) to the protein molecules. Mobile non-toxic PEG chains conjugated to bio-therapeutics increase their hydrodynamic volume and in turn can prolong their plasma retention time and increase their solubility. An important aspect of PEGylation is the selection of PEG molecule with suitable structure and molecular weight. In this study, conceiving the idea that branched PEG-conjugates show superior efficacy over the linear PEG-conjugates, a tri-branched PEG-interferon (mPEG3L2-IFN) was synthesized by reacting a 30 KDa tri-branched mPEG3L2-NHS reagent with IFN to improve its pharmacokinetic properties and reduce the loss of in vitro bioactivity (which is generally exhibited by PEGylation) of the conjugated protein to some extent. The PEGylation procedure was optimized in terms of concentration and molar ratios of reactants, reaction time, temperature and pH conditions of the reaction mix. The conjugate was purified by cation exchange chromatography and characterized by SDS-PAGE and SE-HPLC. Trypsin digestion of mPEG3L2-IFN indicated a single site specificity of PEGylation. Anti viral bioactivity of mPEG3L2-IFN was found to be 2.38 × 107 IU/mg which is approximately 9.52% of native IFNα2 (2.5 × 108 IU/mg) and better than PEGasys from Roche Pharma. Therefore, it is reported that the tri-branched mPEG3L2-NHS reagent has the potential to be used to conjugate proteins for the promising therapeutic results.  相似文献   
34.
Disulfide reductases of host-colonising bacteria are involved in the expression of virulence factors, resistance to drugs, and elimination of toxic compounds. Large-scale genome analyses of 281 prokaryotes identified CXXC and CXXC-derived motifs in each microorganism. The total number of these motifs showed correlations with genome size and oxygen tolerance of the prokaryotes. Specific bioinformatic analyses served to identify putative disulfide reductases in the Campylobacterales Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes and Arcobacter butzleri which colonise the gastrointestinal tract of higher animals. Three filters applied to the genomes of these species yielded 35, 25, 28 and 34 genes, respectively, encoding proteins with the characteristics of disulfide reductases. Ten proteins were common to the four species, including four belonging to the thioredoxin system. The presence of thioredoxin reductase activities was detected in the four bacterial species by observing dithiobis-2-nitrobenzoic acid reduction with β-nicotinamide adenine dinucleotide phosphate as cofactor. Phylogenetic analyses of the thioredoxin reductases TrxB1 and TrxB2 of the four Campylobacterales were performed. Their TrxB1 proteins were more closely related to those of Firmicutes than to the corresponding proteins of other Proteobacteria. The Campylobacterales TrxB2 proteins were closer to glutathione reductases of other organisms than to their respective TrxB1 proteins. The phylogenetic features of the Campylobacterales thioredoxin reductases suggested a special role for these enzymes in the physiology of these bacteria. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
35.
Gamma-carboxylation of vitamin K-dependent proteins is dependent on formation of reduced vitamin K1 (Vit.K1H2) in the endoplasmic reticulum (ER), where it works as an essential cofactor for gamma-carboxylase in post-translational gamma-carboxylation of vitamin K-dependent proteins. Vit.K1H2 is produced by the warfarin-sensitive enzyme vitamin K 2,3-epoxide reductase (VKOR) of the vitamin K cycle that has been shown to harbor a thioredoxin-like CXXC center involved in reduction of vitamin K1 2,3-epoxide (Vit.K>O). However, the cellular system providing electrons to the center is unknown. Here data are presented that demonstrate that reduction is linked to dithiol-dependent oxidative folding of proteins in the ER by protein disulfide isomerase (PDI). Oxidative folding of reduced RNase is shown to trigger reduction of Vit.K>O and gamma-carboxylation of the synthetic gamma-carboxylase peptide substrate FLEEL. In liver microsomes, reduced RNase-triggered gamma-carboxylation is inhibited by the PDI inhibitor bacitracin and also by small interfering RNA silencing of PDI in HEK 293 cells. Immunoprecipitation and two-dimensional SDS-PAGE of microsomal membrane proteins demonstrate the existence of a VKOR enzyme complex where PDI and VKORC1 appear to be tightly associated subunits. We propose that the PDI subunit of the complex provides electrons for reduction of the thioredoxin-like CXXC center in VKORC1. We can conclude that the energy required for gamma-carboxylation of proteins is provided by dithiol-dependent oxidative protein folding in the ER and thus is linked to de novo protein synthesis.  相似文献   
36.
Helicobacter pylori infections are responsible for a sequence of molecular events which ultimately result in the development of gastric diseases. The pathogenesis of H. pylori has been studied extensively with strong focus on the identification of virulence factors. In contrast, the involvement of thiol:disulfide oxidoreductases in bacterial pathogenesis is less well understood. This paper provides a review of the current knowledge of H. pylori putative thiol:disulfide oxidoreductases, and their potential role in promoting virulence and colonization. Several bioinformatic analyses served to complete the information on these oxidoreductases of H. pylori.  相似文献   
37.
Molecular Biology Reports - Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors...  相似文献   
38.
Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood.  相似文献   
39.
40.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号