首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   57篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   10篇
  2012年   21篇
  2011年   16篇
  2010年   21篇
  2009年   26篇
  2008年   21篇
  2007年   13篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   20篇
  2002年   14篇
  2001年   12篇
  2000年   22篇
  1999年   7篇
  1998年   10篇
  1997年   14篇
  1996年   6篇
  1995年   7篇
  1994年   12篇
  1993年   13篇
  1992年   25篇
  1991年   18篇
  1990年   10篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   10篇
  1985年   10篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1971年   4篇
  1952年   4篇
  1944年   2篇
排序方式: 共有539条查询结果,搜索用时 15 毫秒
91.
92.
Strand Displacement Amplification (SDA) is an isothermal, in vitro method of amplifying a DNA target sequence prior to detection [Walker et al (1992) Nucleic Acids Res., 20, 1691-1693]. Here we describe a multiplex form of SDA that allows two target sequences and an internal amplification control to be co-amplified by a single pair of primers after common priming sequences are spontaneously appended to the ends of target fragments. Multiplex SDA operates at a single temperature, under the same simple protocol previously developed for single-target SDA. We applied multiplex SDA to co-amplification of a target sequence (IS6110) that is specific to members of the Mycobacterium tuberculosis-complex and a target (16S ribosomal gene) that is common to most clinically relevant species of mycobacteria. Both targets are amplified 10(8)-fold during a 2 hour, single temperature incubation. The relative sensitivity of the system was evaluated across a number of clinically relevant mycobacteria and checked for crossreactivity against organisms that are closely related to mycobacteria.  相似文献   
93.
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1–10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.  相似文献   
94.
X. Montagutelli  R. Turner    J. H. Nadeau 《Genetics》1996,143(4):1739-1752
Strong deviation of allele frequencies from Mendelian inheritance favoring Mus spretus-derived alleles has been described previously for X-linked loci in four mouse interspecific crosses. We reanalyzed data for three of these crosses focusing on the location of the gene(s) controlling deviation on the X chromosome and the genetic basis for incomplete deviation. At least two loci control deviation on the X chromosome, one near Xist (the candidate gene controlling X inactivation) and the other more centromerically located. In all three crosses, strong epistasis was found between loci near Xist and marker loci on the central portion of chromosome 2. The mechanism for this deviation from Mendelian expectations is not yet known but it is probably based on lethality of embryos carrying particular combinations of alleles rather than true segregation distortion during oogenesis in F(1) hybrid females.  相似文献   
95.
Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.  相似文献   
96.
Guy Nadeau 《CMAJ》1952,67(2):158-159
  相似文献   
97.
98.
The goal of this study was to create a realistic and quantitative simulation of vasopressin (AVP) secretion under iso-osmotic and short-term challenged plasma osmolality. The relationship between AVP concentration ([AVP]) and plasma osmolality was computed using a sophisticated and integrated model that chronologically simulates (1) the overall firing rate of the hypothalamus’ magnocellular neuronal (MCN) population, (2) the propagation of the spike activity down the axons, (3) the fatigue and facilitation mechanisms of AVP release at the axon terminals and (4) the [AVP] pharmacodynamics based on the trains of AVP release. This global simulation predicted that the differential MCN sensitivity to dynorphin would be the most critical mechanism underlying the individual variability of MCN firing behaviors (silence, irregular, phasic and continuous firing patterns). However, at the level of the MCN population, the simulation predicted that the dynorphin factor must be combined with the distribution of the resting membrane potentials among the MCNs to obtain a realistic overall firing rate in response to a change in osmolality. Moreover, taking advantage of the integrated model, the simulation predicted that the selective removal of the frequency-dependent facilitation of AVP secretion has a major impact on the overall [AVP]-to-osmolality relationship (mean absolute change of 2.59?pg/ml); the action potential propagation failure, while critical, has a smaller quantitative impact on the overall [AVP] (0.58?pg/ml). The present integrated model (from a single MCN to a quantitative plasma [AVP]) improves our knowledge of the mechanisms underlying overall MCN firing and AVP excitation-secretion coupling.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号