首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   36篇
  563篇
  2023年   9篇
  2022年   20篇
  2021年   11篇
  2020年   5篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   18篇
  2015年   25篇
  2014年   30篇
  2013年   34篇
  2012年   47篇
  2011年   44篇
  2010年   28篇
  2009年   18篇
  2008年   29篇
  2007年   22篇
  2006年   20篇
  2005年   21篇
  2004年   12篇
  2003年   18篇
  2002年   14篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1995年   2篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1980年   2篇
  1976年   3篇
  1975年   6篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   4篇
  1963年   1篇
  1960年   1篇
排序方式: 共有563条查询结果,搜索用时 0 毫秒
71.
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.  相似文献   
72.
Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.  相似文献   
73.
An efficient protocol was adopted to efficiently prepare three new series of bis(pyrazolo[1,5-a]pyrimidines) linked to different spacers. The new bis(pyrazolo[1,5-a]pyrimidines) were prepared in 80–90 % yields by reacting the respective bis(enaminones) and 4-(4-substituted benzyl)-1H-pyrazole-3,5-diamines in pyridine at reflux temperature for 5–7 h. The new products showed a wide spectrum of antibacterial activity against six different bacterial strains. In general, propane- and butane-linked bis(pyrazolo[1,5-a]pyrimidines), which are attached to 3-(4-methyl- or 4-methoxybenzyl) units, had the best antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values up to 2.5 and 5.1 μM, respectively. Additionally, the previous products demonstrated promising MurB inhibitory activity with IC50 values up to 7.2 μM.  相似文献   
74.
The aim of this study was to evaluate the genotoxicity of repeated exposure to isoflurane or halothane and compare it with the genotoxicity of repeated exposure to cisplatin. We also determined the genotoxicity of combined treatment with inhalation anaesthetics and cisplatin on peripheral blood leucocytes (PBL), brain, liver and kidney cells of mice. The mice were divided into six groups as follows: control, cisplatin, isoflurane, cisplatin–isoflurane, halothane and cisplatin–halothane, and were exposed respectively for three consecutive days. The mice were treated with cisplatin or exposed to inhalation anaesthetic; the combined groups were exposed to inhalation anaesthetic after treatment with cisplatin. The alkaline comet assay was performed. All drugs had a strong genotoxicity (P < 0.05 vs. control group) in all of the observed cells. Isoflurane caused stronger DNA damage on the PBL and kidney cells, in contrast to halothane, which had stronger genotoxicity on brain and liver cells. The combination of cisplatin and isoflurane induced lower genotoxicity on PBL than isoflurane alone (P < 0.05). Halothane had the strongest effect on brain cells, but in the combined treatment with cisplatin, the effect decreased to the level of cisplatin alone. Halothane also induced the strongest DNA damage of the liver cells, while the combination with cisplatin increased its genotoxicity even more. The genotoxicity of cisplatin and isoflurane on kidney cells were nearly at the same level, but halothane caused a significantly lower effect. The combinations of inhalation anaesthetics with cisplatin had stronger effects on kidney cells than inhalation anaesthetics alone. The observed drugs and their combinations induced strong genotoxicity on all of the mentioned cells.  相似文献   
75.
Proteins of the aegerolysin family have a high abundance in Fungi. Due to their specific binding to membrane lipids, and their membrane‐permeabilization potential in concert with protein partner(s) belonging to a membrane‐attack‐complex/perforin (MACPF) superfamily, they were proposed as useful tools in different biotechnological and biomedical applications. In this work, we performed functional studies on expression of the genes encoding aegerolysin and MACPF‐like proteins in Aspergillus niger. Our results suggest the sporulation process being crucial for strong induction of the expression of all these genes. However, deletion of either of the aegerolysin genes did not influence the growth, development, sporulation efficiency and phenotype of the mutants, indicating that aegerolysins are not key factors in the sporulation process. In all our expression studies we noticed a strong correlation in the expression of one aegerolysin and MACPF‐like gene. Aegerolysins were confirmed to be secreted from the fungus. We also showed the specific interaction of a recombinant A. niger aegerolysin with an invertebrate‐specific membrane sphingolipid. Moreover, using this protein labelled with mCherry we successfully stained insect cells membranes containing this particular sphingolipid. Our combined results suggest, that aegerolysins in this species, and probably also in other aspergilli, could be involved in defence against predators.  相似文献   
76.
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.  相似文献   
77.
The present paper describes environmental and seasonal‐related chemical composition variations, vasorelaxant and angiotensin I‐converting enzyme (ACE) activities of essential oil from aerial parts of Seseli pallasii Besser . The composition was analyzed by GC and GC/MS. Monoterpenes were found to be the most abundant chemical class with α ‐pinene (42.7 – 48.2%) as the most prevalent component. Seseli pallasi essential oil relaxed isolated endothelium‐intact mesenteric arteries rings precontracted with phenylephrine with IC 50 = 3.10 nl/ml (IC 50 = 2.70 μg/ml). Also, S. pallasii essential oil was found to exhibit a dose‐dependent ACE inhibitory activity with an IC 50 value of 0.33 mg/ml. In silico evaluation of ACE inhibitory activity of the individual components showed that spathulenol exhibited the best binding affinity with ACE, and the lowest binding energy of ?7.5 kcal/mol. The results suggested that combination of vasorelaxing and ACE inhibitory effects of the analyzed S. pallasii essential oil might have the potential therapeutic significance in hypertension.  相似文献   
78.
For the zonula adherens (ZA) to be established by linear arrangement of adherens junctions (AJs) in epithelial sheet cells, critical for the epithelial cell sheet formation and intercellular barrier function, myosin-2 is supposedly integrated into the ZA with the result of overlapping localization of E-cadherin/actin/myosin-2. Here, we immunofluorescently showed that myosin-2 failed to be integrated into the ZA in cultured epithelial-type ZO1(ko)/2(kd) Eph4 cells lacking ZO-1 and -2 (zonula occludens-1 and -2) by knockout and knockdown, respectively. Instead, a linearized but fragmented arrangement of AJs was formed in the way that it was positive for E-cadherin/actin, but negative for myosin-2 (designated prezonula-AJ). Transfection of full-length ZO-1 or ZO-2, or ZO-1 lacking its PDZ (PSD-95/discs large/zonula occludens-1)-1/2 domains (but not one lacking PDZ-1/2/3) into ZO1(ko)/2(kd) Eph4 cells restored the junctional integration of myosin-2 with prezonula-AJ to establish the ZA. Transfection of dominant-active RhoA or Rho-kinase (ROCK), as well as administration of lysophosphatidic acid or Y27632, which activates RhoA or inhibits ROCK, respectively, suggested that RhoA regulated the junctional integration of myosin-2 into ZA in a manner such that ROCK played a necessary but not-sufficient role. Fluorescence resonance energy transfer analyses revealed that spatiotemporal Rho-activation occurred in a ZO-1/2–dependent way to establish ZA from primordial forms in epithelial cells.  相似文献   
79.
The tyrosine kinase c-Src is upregulated in various human cancers irrespective of its negative regulator Csk, but the regulatory mechanisms remain unclear. Here, we show that a lipid raft-anchored Csk adaptor, Cbp/PAG, is directly involved in controlling the oncogenicity of c-Src. Using Csk-deficient cells that can be transformed by c-Src overexpression, we found that Cbp expression is markedly downregulated by c-Src activation and re-expression of Cbp efficiently suppresses c-Src transformation as well as tumorigenesis. Cbp-deficient cells are more susceptible to v-Src transformation than their parental cells. Upon phosphorylation, Cbp specifically binds to activated c-Src and sequesters it in lipid rafts, resulting in an efficient suppression of c-Src function independent of Csk. In some human cancer cells and tumors, Cbp is downregulated and the introduction of Cbp significantly suppresses tumorigenesis. These findings indicate a potential role for Cbp as a suppressor of c-Src-mediated tumor progression.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号