首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   39篇
  2023年   10篇
  2022年   24篇
  2021年   12篇
  2020年   7篇
  2019年   13篇
  2018年   16篇
  2017年   16篇
  2016年   23篇
  2015年   30篇
  2014年   33篇
  2013年   41篇
  2012年   48篇
  2011年   49篇
  2010年   30篇
  2009年   21篇
  2008年   30篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   12篇
  2003年   19篇
  2002年   14篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1995年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1984年   3篇
  1980年   2篇
  1976年   3篇
  1975年   6篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   4篇
  1963年   1篇
  1960年   1篇
排序方式: 共有610条查询结果,搜索用时 31 毫秒
41.
The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.  相似文献   
42.
43.
Cysteine-scanning mutants as to putative transmembrane segments 4 and 5 and the flanking regions of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) were constructed. All mutants were normally expressed. Among the 57 mutants (L99C to I155C), nine conserved arginine-, aspartate-, and glycine-replaced ones exhibited greatly reduced tetracycline resistance and almost no transport activity, and five conserved glycine- and proline-replaced mutants exhibited greatly reduced tetracycline transport activity in inverted membrane vesicles despite their high or moderate drug resistance. All other cysteine-scanning mutants retained normal drug resistance and normal tetracycline transport activity except for the L142C and I143C mutants. The transmembrane (TM) regions TM4 and TM5 were determined to comprise 20 amino acid residues, Leu-99 to Ile-118, and 17 amino acid residues, Ala-136 to Ala-152, respectively, on the basis of N-[(14)C]ethylmaleimide ([(14)C]NEM) reactivity. The NEM reactivity patterns of the TM4 and TM5 mutants were quite different from each other. TM4 could be divided into two halves, that is, a NEM nonreactive periplasmic half and a periodically reactive cytoplasmic half, indicating that TM4 is tilted toward a water-filled transmembrane channel and that only its cytoplasmic half faces the channel. On the other hand, NEM-reactive mutations were observed periodically (every two residues) along the whole length of TM5. A permeability barrier for a membrane-impermeable sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, was present in the middle of TM5 between Leu-142 and Gly-145, whereas all the NEM-reactive mutants as to TM4 were not accessible to 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, indicating that the channel-facing side of TM4 is located inside the permeability barrier. Tetracycline protected the G141C mutant from the NEM binding, whereas the other mutants in TM4 and TM5 were not protected by tetracycline.  相似文献   
44.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun) family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys) mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9) and found a missense mutation (c.160C>T) in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively), one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17). This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.  相似文献   
45.
46.
Mucormycosis is an uncommon opportunistic infection by filamentous fungi that usually develops in immmunocompromised patients. Most individuals have an underlying systemic disease, such as diabetes mellitus, malignancy, uraemia, burns, renal transplant recipients and those on corticosteroid and immunosuppressive therapy. Many cases of primary renal zygomycosis with lungs serving as the portal of entry have been reported from this region. We describe two autopsy cases of renal zygomycosis where bladder appeared to be the portal of entry for the fungus.  相似文献   
47.
The effect of controlled whey hydrolysis by papain on growth of two lactic acid bacteria isolated from artisanal Leben: Lactococcus lactis var. diacetylactis (SLT6 and SLT10) was investigated. The higher biomass and maximum specific growth rate (μ max) were obtained after 30 min of hydrolysis. HPLC analysis of peptides showed that whey hydrolysis reduced the amount of peptides of MW > 400 Da and increased those peptides of MW < 400 Da. The two studied strains exhibited different peptide requirements. The pH-controlled batch cultures in 30 min hydrolysed whey followed the Monod kinetic for growth and for lactate production. The values of the key kinetic constants were: maximum specific growth rate (μ max), 1.08 and 0.56 h?1; yield biomass on lactose (Y x/s), 0.20 and 0.18 g g?1 and saturation constant K s, 4.2 and 2.8 g L?1 for SLT6 and SLT10, respectively. When compared with batch experimental data, the model provided good predictions for growth, lactose utilisation and lactate production profiles.  相似文献   
48.
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.  相似文献   
49.
In this work, the chitin was treated by 0.1 N HCl, 0.5 N NaOH, and 8% sodium hypochlorite. The change of the molecular structure was studied by Fourier Transform Infrared Spectroscopy (FTIR) in the wavenumber range (400–4000 cm−1). The absorption bands were assigned and the crystallinity index was calculated from the ratio of the absorbance C–N band at 1378 cm−1 and CH at 2925 cm−1. The data indicated that, the crystallinity index of chitin is higher than that of treated chitin which is due to the hydrolysis of some acetamide group. Also, treating with alkali causes a swelling of chitin chains. The dielectric properties such as dielectric constant (ε′), dielectric loss (ε″) and AC electrical conductivity were measured and discussed as a function of frequencies (0.1 kHz–3 MHz). The dielectric constant (ε′) was decreased with increasing frequencies due to the dielectric dispersion. β-relaxation was observed and discussed from the dielectric loss (ε″). The results of AC conductivity showed that, at high frequency, the conductivity increased with increasing frequencies and its interpreted in term of hopping conduction.  相似文献   
50.
Selenium can have cancer chemopreventive activity, although the mechanism of action has not been well defined. Selenazolidine-4-(R)-carboxylic acids (SCAs) were devised as prodrugs of L-selenocysteine, to provide selenium in a form and at a concentration commensurate with cancer chemopreventive activity. In the present study, a series of selenazolidines has been evaluated in the Salmonella typhimurium TA98 tester strain and all were found to possess antimutagenic activity. There was little difference between the seven selenazolidines in their effectiveness against either benzo[a]pyrene (B[a]P) or 3,6-bis(dimethylamino)acridine (acridine orange), agents which differ in their requirement for mammalian enzyme bioactivation for mutagenicity. Antimutagenic activity against acridine orange was dependent on selenazolidine concentration, and EC50 values were in the 5-10 microM range. At 25 microM, the concentration tested in common for the two mutagens, the selenazolidines were more effective antimutagens against acridine orange than against B[a]P, with reductions in mutant frequency ranging from 54 to 71% for B[a]P and 79 to 93% for acridine orange. Efficacy against B[a]P was not enhanced when the concentration was increased to 50 microM. The similarity in efficacy among the selenazolidines against B[a]P mutagenicity, contrasted with inter-compound differences in their ability to inhibit S9 CYP1A activity. The CYP1A Ki values ranged from a low of 63 microM (2-[2'-hydroxyphenyl]SCA) to a high of 1.1mM (2-cyclohexylSCA), but all were above the concentration required to inhibit mutagenicity by 50%. Thus, all the SCAs possess antimutagenic activity against both B[a]P and acridine orange, the efficacy varies little between the individual selenazolidines, and for B[a]P, the efficacy is not proportional to the inhibitory effect on the mutagen bioactivating enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号