首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   10篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   10篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   6篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有153条查询结果,搜索用时 687 毫秒
81.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   
82.
83.
Phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P(3)) plays important signaling roles in immune cells, particularly in the control of activating pathways and of survival. It is formed by a family of phosphatidylinositol 3'-kinases (PI3Ks) which phosphorylate PtdIns(4,5)P(2) in vivo. In human neutrophils, the levels of PtdIns(3,4,5)P(3) increase rapidly at the leading edge of locomoting cells and at the base of the phagocytic cup during FcgammaR-mediated particle ingestion. Even though these, and other, data indicate that PtdIns(3,4,5)P(3) is involved in the control of chemotaxis and phagocytosis in human neutrophils, the mechanisms that regulate its levels have yet to be fully elucidated in these cells. We evaluated the potential implication of SHIP1 and PTEN, two lipid phosphatases that utilize PtdIns(3,4,5)P(3) as substrate, in the signaling pathways called upon in response to CD32a cross-linking. We observed that the cross-linking of CD32a resulted in a transient accumulation of PtdIns(3,4,5)P(3). CD32a cross-linking also induced the tyrosine phosphorylation of SHIP1, its translocation to the plasma membrane and its co-immunoprecipitation with CD32a. CD32a cross-linking had no effect on the level of serine/threonine phosphorylation of PTEN and did not stimulate its translocation to the plasma membrane. PP2, a Src kinase inhibitor, inhibited the tyrosine phosphorylation of SHIP1 as well as its translocation to the plasma membrane. Wortmannin, a PI3K inhibitor, had no effect on either of these two indices of activation of SHIP1. Our results indicate that SHIP1 is involved, in a Src kinase-dependent manner, in the early signaling events observed upon the cross-linking of CD32a in human neutrophils.  相似文献   
84.
Class I PI3Ks, through the formation of phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P(3)), are thought of as essential elements of the neutrophil response to chemotactic factors. Moreover, the recent development of PI3K-deficient mice and isoform-specific inhibitors enabled examinations of the contribution of the distinct PI3K isoforms in neutrophil activation. However, the results of these various studies are conflicting, and the exact role of the different PI3K isoforms is not yet clearly established, particularly in human cells. In the present study, we used a different approach to assess the role of the distinct PI3K isoforms in response to the chemotactic agent fMLP. We inhibited PI3K activities by the transient expression following nucleofection of dominant negative mutants of either p85alpha or p110gamma in the human myeloid cell line PLB-985, which can be induced to express a neutrophil-like phenotype. The data obtained with this approach showed that the production of PI(3,4,5)P(3) triggered by fMLP is biphasic, with a peak of production observed in a short time period that entirely depends on p110gamma activity, and a delayed phase that is mediated by class I(A) PI3K. We also provide evidence that the PI3K-dependent functional responses (i.e., superoxide production and chemotaxis) induced by the chemotactic factor mainly involve PI3K I(A) and, by implication, the delayed phase of PI(3,4,5)P(3) production, whereas p110gamma and the early peak of PI(3,4,5)P(3) do not play major roles in the initiation or the control of these responses.  相似文献   
85.
86.

Background  

Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1.  相似文献   
87.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   
88.
89.
Human osteoblast-like cells (hOB) stimulated by monosodium urate monohydrate (MSUM) or calcium pyrophosphate dihydrate (CPPD) microcrystals produce the neutrophil chemoattractant IL-8. We investigated whether human neutrophils can adhere to hOB and respond to hOB preactivated by MSUM, CPPD, or by f-Met-Leu-Phe (fMLP). Confluent hOB were coincubated with human blood neutrophils in the presence of MSUM, CPPD or fMLP. MSUM, CPPD, and fMLP stimulated a significant adherence of neutrophils to hOB after a 1h incubation. This effect was not abrogated by pretreating the cells with an anti-CD18 mAb. MSUM stimulated more efficiently the adherence of neutrophils to non-preactivated hOB while CPPD were more efficient when hOB were preactivated. Crystal-free conditioned media from MSUM- or CPPD-stimulated hOB mobilized intracellular free calcium in human neutrophils. Thus, microcrystals were powerful promoters of neutrophil adherence to hOB via a CD18-independent mechanism. The bacterial peptide fMLP also stimulated the adherence of neutrophils to hOB. Functional neutrophil-hOB interactions could be important in bone pathophysiology of crystal- or infection-associated arthritis.  相似文献   
90.
The co-carcinogenic compound phorbol 12-myristate 13-acetate but not its inactive analogue 4 alpha-phorbol 12,13-didecanoate causes the phosphorylation of several rabbit neutrophil polypeptides whose molecular weights and isoelectric points (pI) are as follows: Mr = 40,000, pI = 6.4; Mr = 50,000, pI = 4.9; Mr = 55,000, pI = 6.3; Mr = 64,000, pI = 6.0; Mr = 70,000, pI = 5.6; Mr = 90,000, pI = 6.0. Most of these phosphorylated proteins are located exclusively in the cytosol; the 64,000 molecular weight protein is found both in the cytosol and the cytoskeleton, and the 40,000 molecular weight protein is found in the nuclear pellet. The 50,000 molecular weight protein is also phosphorylated in whole cells by the chemotactic peptide fMet-Leu-Phe and in cell-free systems by protein kinase C. Using limited proteolysis, one phosphopeptide fragment was phosphorylated by the three stimuli. In addition, phorbol 12-myristate 13-acetate but not 4 alpha-phorbol 12,13-didecanoate causes cell aggregation and the exocytotic release of the specific granules of rabbit neutrophils. In contrast, both compounds increase the amount of actin associated with the cytoskeleton. The divalent cation ionophore A23187 at low concentration and the compound phorbol 12-myristate 13-acetate act synergistically in causing neutrophil degranulation. Lysosomal enzyme release and the phosphorylation of the 50,000 molecular weight polypeptide produced by phorbl 12-myristate 13-acetate are inhibited by trifluoperazine, and these two responses seem to be causally related. These results are discussed in terms of the role of 1,2-diacylglycerol and activation of protein kinase C in specific granule release from rabbit neutrophils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号