首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   11篇
  232篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   14篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   12篇
  2015年   9篇
  2014年   17篇
  2013年   15篇
  2012年   26篇
  2011年   11篇
  2010年   11篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
101.
Salinity and drought are the most important environmental constraints limiting crop growth and productivity. Here, we have characterized a gene 'SaβNAC' encoding the β subunit of nascent polypeptide associated complex from a halophyte Spartina alterniflora and investigated its role toward abiotic stress regulation. Expression of SaβNAC was differentially regulated by abiotic stresses, including salinity, drought, cold, and ABA in leaves and roots of S. alterniflora. Constitutive over-expression of SaβNAC in Arabidopsis exhibited normal growth under non-stress conditions but enhanced tolerance to salt and drought stresses. Transgenic SaβNAC Arabidopsis retained more chlorophyll, proline, and showed improved ionic homeostasis with less damage under stress conditions compared to WT plants. This is a first report to demonstrate the involvement of βNAC in imparting abiotic stress tolerance which might be due to protection of the newly synthesized polypeptides involved in various stress tolerance mechanisms from abiotic stress induced damage and inhibition of cell death in plant.  相似文献   
102.
Microbial xylanases and associated enzymes degrade the xylans present in lignocellulose in nature. Xylanase production by Cellulosimicrobium sp. CKMX1, isolated from mushroom compost, produced a cellulase-free extracellular endo-1, 4-β-xylanase (EC 3.2.1.8) at 35 °C and pH 8.0. Apple pomace—an inexpensive and abundant source of carbon—supported maximal xylanase activity of 500.10 U/g dry bacterial pomace (DBP) under solid state fermentation. Culture conditions, e.g., type of medium, particle size of carbon source, incubation period, temperature, initial pH, and inoculum size, were optimized and xylanase activity was increased to 535.6 U/g DBP. CMCase, avicelase, FPase and β-glucosidase activities were not detected, highlighting the novelty of the xylanase enzyme produced by CKMX1. Further optimization of enzyme production was carried out using central composite design following response surface methodology with four independent variables (yeast extract, urea, Tween 20 and carboxymethyl cellulose), which resulted in very high levels of xylanase (861.90 U/g DBP). Preliminary identification of the bacterial isolate was made on the basis of morphological and biochemical characters and confirmed by partial 16Sr RNA gene sequencing, which identified CKMX1 as Cellulosimicrobium sp. CKMX1. A phylogenetic analysis based on the 16Sr RNA gene sequence placed the isolate within the genus Cellulosimicrobium, being related most closely to Cellulosimicrobium cellulans strain AMP-11 (97% similarity). The ability of this strain to produce cost-effective xylanase from apple pomace on a large scale will help in the waste management of apple pomace.  相似文献   
103.
The appeal of trait‐based approaches for assessing environmental vulnerabilities arises from the potential insight they provide into the mechanisms underlying the changes in populations and community structure. Traits can provide ecologically based explanations for observed responses to environmental changes, along with predictive power gained by developing relationships between traits and environmental variables. Despite these potential benefits, questions remain regarding the utility and limitations of these approaches, which we explore focusing on the following questions: (a) How reliable are predictions of biotic responses to changing conditions based on single trait–environment relationships? (b) What factors constrain detection of single trait–environment relationships, and how can they be addressed? (c) Can we use information on meta‐community processes to reveal conditions when assumptions underlying trait‐based studies are not met? We address these questions by reviewing published literature on aquatic invertebrate communities from stream ecosystems. Our findings help to define factors that influence the successful application of trait‐based approaches in addressing the complex, multifaceted effects of changing climate conditions on hydrologic and thermal regimes in stream ecosystems. Key conclusions are that observed relationships between traits and environmental stressors are often inconsistent with predefined hypotheses derived from current trait‐based thinking, particularly related to single trait–environment relationships. Factors that can influence findings of trait‐based assessments include intercorrelations of among traits and among environmental variables, spatial scale, strength of biotic interactions, intensity of habitat disturbance, degree of abiotic stress, and methods of trait characterization. Several recommendations are made for practice and further study to address these concerns, including using phylogenetic relatedness to address intercorrelation. With proper consideration of these issues, trait‐based assessment of organismal vulnerability to environmental changes can become a useful tool to conserve threatened populations into the future.  相似文献   
104.
H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark.  相似文献   
105.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2α‐LixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   
106.
107.
Physiological cross-sectional area (PCSA) is used to compare force-producing capabilities of muscles. A limitation of PCSA is that it cannot be measured directly from a specimen, as there is usually no area within the muscle traversed by all fibres. Traditionally, a formula requiring averaged architectural parameters has been used. The purpose of this paper is to describe the development of a fibre bundle element (FBE) method to calculate PCSA from digitised fibre bundle data of five architecturally distinct muscles and compare the FBE and PCSA formula. An FBE method was developed that used a serially arranged set of cylinders as the volumetric representation of each fibre bundle, and PCSA was computed as the summation of the cross-sectional area of each FBE. Four of five muscles had significantly different PCSA between FBE and formula methods. The FBE method provides an approach that considers architectural variances while minimising the need for averaged architectural parameters.  相似文献   
108.
A novel protease from the halophilic bacterium Geomicrobium sp. EMB2 (MTCC 10310) is described. The activity of the protease was modulated by salt, and it exhibited remarkable stability in organic solvents, at alkaline pH, and in other denaturing conditions. The structural changes under various denaturing conditions were analyzed by measurements of intrinsic fluorescence and circular dichroism spectroscopy. Circular dichroism showed that the secondary structure of the protease was predominantly α-helical but unfolded in salt-free medium. The structure is regained by inclusion of NaCl in the range of 2–5%. The presence of NaCl exerted a protective effect against thermal, organic solvent, and guanidine hydrochloride denaturation by preventing unfolding.  相似文献   
109.
The molecular diversity of thirty-two different Morchella cultures/fruiting bodies, collected from the Western Himalayan region was studied in this investigation. Considerable taxonomic confusion exists regarding many species of Morchella. Although classical taxonomy is helpful in identification for many ascomycetes, morels exhibit considerable morphological diversity and there is disagreement in the identification of morel species. Phylogenetic analyses based on DNA sequences could help in sorting out morel taxonomy which is essential to better define the morel diversity. In this study, sequence analysis revealed that in the Western Himalayan region of India, both yellow (M. crassipes, M. spongiola) and black morels (M. elata, M. angusticeps, and M. gigas) were prominent along with two Verpa species. Phylogenetic analysis by maximum parsimony, maximum likelihood and Bayesian inference revealed two different clades and a clear distinction between yellow and black morels.  相似文献   
110.
Drosophila kikkawai, which has colonized the Indian subcontinent in the recent past, exhibits geographical variations for five quantitative traits among eight Indian populations (8.29–32.7°N). Body weight, wing length, thorax length, abdominal bristles and ovariole number exhibit significant clinal variation with increase in latitude, while sternopleural bristles do not demonstrate such a trend. For the female sex, the slope values for body weight (2.25) and wing length (2.40) are higher but they are lower for thorax length (0.64) and ovariole number (0.51 per degree latitude). There is significant sexual dimorphism for the slope values only for body weight and thorax length suggesting simultaneous action of latitudinal selection pressure on these traits. However, the two sexes do not differ statistically in the latitudinal slope values for the wing length. A regression analysis of different traits on body weight implies correlated selection response on wing length and wing/thorax ratio while thorax length corresponds to changes in body size and does not differ in the two sexes. Regression analysis, on the basis of temperature-related climatic variables, evidence significantly higher association between all the five size-related traits and coefficient of variation of mean annual temperature (seasonal thermal amplitude; T cv), T min and relative humidity. Thus, genetic differentiation for quantitative traits in D. kikkawai are due to selective pressure from variable climatic conditions occurring on the Indian subcontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号