首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.  相似文献   
22.
The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2’s homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2) might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization.  相似文献   
23.
Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein, Eps15 homology domain 1 (EHD1). We have demonstrated this interaction by glutathione S-transferase-pulldown, yeast two-hybrid assay, isothermal calorimetry and co-immunoprecipitation, and found that the binding occurs between the EH domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 colocalizes and interacts with components of the retromer complex such as vacuolar protein sorting 26 (Vps26), suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as overexpression of a wild-type Rank-5-small interfering RNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of vesicular stomatitis virus glycoprotein. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion.  相似文献   
24.
Endocytosis is a conserved process across species in which cell surface receptors and lipids are internalized from the plasma membrane. Once internalized, receptors can either be degraded or be recycled back to the plasma membrane. A variety of small GTP-binding proteins regulate receptor recycling. Despite our familiarity with many of the key regulatory proteins involved in this process, our understanding of the mode by which these proteins co-operate and the sequential manner in which they function remains limited. In this study, we identify two GTP-binding proteins as interaction partners of the endocytic regulatory protein molecule interacting with casl-like protein 1 (MICAL)-L1. First, we demonstrate that Rab35 is a MICAL-L1-binding partner in vivo. Over-expression of active Rab35 impairs the recruitment of MICAL-L1 to tubular recycling endosomes, whereas Rab35 depletion promotes enhanced MICAL-L1 localization to these structures. Moreover, we demonstrate that Arf6 forms a complex with MICAL-L1 and plays a role in its recruitment to tubular endosomes. Overall, our data suggest a model in which Rab35 is a critical upstream regulator of MICAL-L1 and Arf6, while both MICAL-L1 and Arf6 regulate Rab8a function.  相似文献   
25.
The trafficking of two plasma membrane (PM) proteins that lack clathrin internalization sequences, major histocompatibility complex class I (MHCI), and interleukin 2 receptor alpha subunit (Tac) was compared with that of PM proteins internalized via clathrin. MHCI and Tac were internalized into endosomes that were distinct from those containing clathrin cargo. At later times, a fraction of these internalized membranes were observed in Arf6-associated, tubular recycling endosomes whereas another fraction acquired early endosomal autoantigen 1 (EEA1) before fusion with the "classical" early endosomes containing the clathrin-dependent cargo, LDL. After convergence, cargo molecules from both pathways eventually arrived, in a Rab7-dependent manner, at late endosomes and were degraded. Expression of a constitutively active mutant of Arf6, Q67L, caused MHCI and Tac to accumulate in enlarged PIP(2)-enriched vacuoles, devoid of EEA1 and inhibited their fusion with clathrin cargo-containing endosomes and hence blocked degradation. By contrast, trafficking and degradation of clathrin-cargo was not affected. A similar block in transport of MHCI and Tac was reversibly induced by a PI3-kinase inhibitor, implying that inactivation of Arf6 and acquisition of PI3P are required for convergence of endosomes arising from these two pathways.  相似文献   
26.
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross‐regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.   相似文献   
27.
Sphingolipid-rich rafts play an essential role in the posttranslational (Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990) J. Cell Biol. 110, 743-752)) formation of the scrapie prion protein PrP(Sc) from its normal conformer PrP(C) (Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S. B., and Avraham, D. (1995) J. Cell Biol. 129, 121-132). We investigated the importance of sphingolipids in the metabolism of the PrP isoforms in scrapie-infected ScN2a cells. The ceramide synthase inhibitor fumonisin B(1) (FB(1)) reduced both sphingomyelin (SM) and ganglioside GM1 in cells by up to 50%, whereas PrP(Sc) increased by 3-4-fold. Whereas FB(1) profoundly altered the cell lipid composition, the raft residents PrP(C), PrP(Sc), caveolin 1, and GM1 remained insoluble in Triton X-100. Metabolic radiolabeling demonstrated that PrP(C) production was either unchanged or slightly reduced in FB(1)-treated cells, whereas PrP(Sc) formation was augmented by 3-4-fold. To identify the sphingolipid species the decrease of which correlates with increased PrP(Sc), we used two other reagents. When cells were incubated with sphingomyelinase for 3 days, SM levels decreased, GM1 was unaltered, and PrP(Sc) increased by 3-4-fold. In contrast, the glycosphingolipid inhibitor PDMP reduced PrP(Sc) while increasing SM. Thus, PrP(Sc) seems to correlate inversely with SM levels. The effects of SM depletion contrasted with those previously obtained with the cholesterol inhibitor lovastatin, which reduced PrP(Sc) and removed it from detergent-insoluble complexes.  相似文献   
28.
EHD1 regulates the trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane. However, the potential role of EHD1 in regulating the family of glycosylphosphatidylinositol-anchored proteins (GPI-APs) has not been determined. Here we demonstrate a novel role for EHD1 in regulating the trafficking of CD59, an endogenous GPI-AP, at early stages of trafficking through the endocytic pathway. EHD1 displays significant colocalization with newly internalized CD59. Upon EHD1 depletion, there is a rapid Rab5-independent coalescence of CD59 in the ERC region. However, expression of an active Arf6 mutant (Q67L), which traps internalized pre-sorting endosomal cargo in phosphatidylinositol(4,5)-bisphosphate enriched vacuoles, prevents this coalescence. It is of interest that sustained PKC activation leads to a similar coalescence of CD59 at the ERC, and treatment of EHD1-depleted cells with a PKC inhibitor (Go6976) blocked this rapid relocation of CD59. However, unlike sustained PKC activation, EHD1 depletion does not induce the translocation of PKCα to ERC. The results presented herein provide evidence that EHD1 is involved in the control of CD59 transport from pre-sorting endosomes to the ERC in a PKC-dependent manner. However, the mechanisms of EHD1-induced coalescence of CD59 at the ERC differ from those induced by sustained PKC activation.  相似文献   
29.
The lipid modifier phospholipase A2 catalyzes the hydrolysis of phospholipids to inverted-cone-shaped lysophospholipids that contribute to membrane curvature and/or tubulation. Conflicting findings exist regarding the function of cytosolic phospholipase A2 (cPLA2) and its role in membrane regulation at the Golgi and early endosomes. However, no studies addressed the role of cPLA2 in the regulation of cholesterol-rich membranes that contain glycosylphosphatidylinositol-anchored proteins (GPI-APs). Our studies support a role for cPLA2α in the vesiculation of GPI-AP-containing membranes, using endogenous CD59 as a model for GPI-APs. On cPLA2α depletion, CD59-containing endosomes became hypertubular. Moreover, accumulation of lysophospholipids induced by a lysophospholipid acyltransferase inhibitor extensively vesiculated CD59-containing endosomes. However, overexpression of cPLA2α did not increase the endosomal vesiculation, implying a requirement for additional factors. Indeed, depletion of the "pinchase" EHD1, a C-terminal Eps15 homology domain (EHD) ATPase, also induced hypertubulation of CD59-containing endosomes. Furthermore, EHD1 and cPLA2α demonstrated in situ proximity (<40 nm) and interacted in vivo. The results presented here provide evidence that the lipid modifier cPLA2α and EHD1 are involved in the vesiculation of CD59-containing endosomes. We speculate that cPLA2α induces membrane curvature and allows EHD1, possibly in the context of a complex, to sever the curved membranes into vesicles.  相似文献   
30.
Endocytic trafficking is a highly organized process regulated by a network of proteins, including the Rab family of small GTP-binding proteins and the C-terminal EHDs (Eps15 homology-domain-containing proteins). Central roles for Rab proteins have been described in vesicle budding, delivery, tethering and fusion, whereas little is known about the functions of EHDs in membrane transport. Common effectors for these two protein families have been identified, and they facilitate regulation of sequential steps in transport. By comparing and contrasting key aspects in their modes of function, we shall promote a better understanding of how Rab proteins and EHDs regulate endocytic trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号