首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4024篇
  免费   283篇
  国内免费   288篇
  4595篇
  2024年   10篇
  2023年   63篇
  2022年   129篇
  2021年   221篇
  2020年   170篇
  2019年   162篇
  2018年   172篇
  2017年   141篇
  2016年   194篇
  2015年   260篇
  2014年   326篇
  2013年   341篇
  2012年   350篇
  2011年   316篇
  2010年   218篇
  2009年   192篇
  2008年   212篇
  2007年   165篇
  2006年   145篇
  2005年   137篇
  2004年   96篇
  2003年   81篇
  2002年   71篇
  2001年   55篇
  2000年   55篇
  1999年   59篇
  1998年   40篇
  1997年   22篇
  1996年   31篇
  1995年   26篇
  1994年   19篇
  1993年   16篇
  1992年   16篇
  1991年   13篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1979年   4篇
排序方式: 共有4595条查询结果,搜索用时 15 毫秒
71.
72.
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1‐AIPP1‐EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin‐containing genes. However, the genome‐wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome‐wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin‐containing genes, including not only intronic heterochromatin‐containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin‐overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin‐containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.  相似文献   
73.
Recent studies have demonstrated that hydrogen sulfide (H2S) produced through the activity of l -cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2S function in stomatal closure. We discovered that ABA-activated DES1 produces H2S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.  相似文献   
74.
Abelmoschus manihot has drawn much attention recently due to its potential beneficial health effects after oral administration. However, the metabolic fate of A. manihot in intestinal flora is not well understood. In this paper, we describe a strategy using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) with automated data analysis software (MetaboLynx?) for fast analysis of the metabolic profile of flavonoids from A. manihot in intestinal flora. The human and rat incubated samples collected 72 h in the anaerobic incubator were analyzed by UPLC-Q-TOF MS within 10 min. A total of 14 metabolites were identified in human and rat incubated solution compared with blank samples. The results indicated that hydrolysis, hydroxylation and acetylation were the major metabolic pathways of flavonoids in A. manihot extract in vitro. MS(E) was used for simultaneous acquisition of precursor ion information and fragment ion data at high and low collision energy in one analytical run, which facilitated the fast structural characterization of metabolites. This work demonstrated the potential of the UPLC-Q-TOF MS approach using Metabolynx for fast and automated identification of metabolites of natural product in intestinal flora.  相似文献   
75.
Alcoholic liver disease (ALD) is a serious fiver problem in western countries. Our previous study has demonstrated that vitamin C plays a protective role in ALD. The vitamin C homeostasis is tightly regulated by sodium-dependent vitamin C transporters (SVCTs) 1 and 2. But the role of two SVCTs in ALD is less understood. In this study, we exam- ined the expression patterns of two SVCTs in mice after alcohol consumption. Our results suggested that alcohol con- sumption obviously increased the expression of two SVCTs in liver and SVCT1 in kidney and intestine, which is important for vitamin C absorption. Vitamin C supplement increased the sera vitamin C content and ameliorated the symptom of ALD. Intestinal absorption and renal re-absorption mediated by SVCTI are key factors to increase the sera vitamin C content after alcohol consumption. We proposed that both reactive oxygen species and low vitamin C concentration regulate the expression of SVCTs, and the protective role of vitamin C is mediated by suppressing the stability of hypoxia-inducible factor-loL. Thus, our study is significant for the understanding of vitamin C homeostasis in ALD and for better use of other antioxidants in ALD therapy.  相似文献   
76.
Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2∶3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae.  相似文献   
77.
Shen  Li  Zhu  Jianqing  Lin  Yuxiang  Fang  Jie  Wang  Yongqiang  Tang  Liying  Zhao  Qinghao  Xiao  Mengqi  Duan  Feiyu  Liu  Qunxiu  Yu  Weidong  Jiang  Weibin 《Organisms Diversity & Evolution》2022,22(3):659-667
Organisms Diversity & Evolution - The butterfly tribe Tagiadini Mabille, 1878 is a large group of skippers. Although there are a few species which are limited in distribution to some countries...  相似文献   
78.
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.  相似文献   
79.
Genotyping studies of Australian Scedosporium isolates have revealed the strong prevalence of a recently described species: Scedosporium aurantiacum. In addition to occurring in the environment, this fungus is also known to colonise the respiratory tracts of cystic fibrosis (CF) patients. A high throughput Phenotype Microarray (PM) analysis using 94 assorted substrates (sugars, amino acids, hexose-acids and carboxylic acids) was carried out for four isolates exhibiting different levels of virulence, determined using a Galleria mellonella infection model. A significant difference was observed in the substrate utilisation patterns of strains displaying differential virulence. For example, certain sugars such as sucrose (saccharose) were utilised only by low virulence strains whereas some sugar derivatives such as D-turanose promoted respiration only in the more virulent strains. Strains with a higher level of virulence also displayed flexibility and metabolic adaptability at two different temperature conditions tested (28 and 37°C). Phenotype microarray data were integrated with the whole-genome sequence data of S. aurantiacum to reconstruct a pathway map for the metabolism of selected substrates to further elucidate differences between the strains.  相似文献   
80.
Ovarian cancer is a leading cause of death among gynaecologic malignancies. Despite many years of research, it still remains sparing in reliable diagnostic markers and methods for early detection and screening. Transforming growth factor β‐activated protein kinase 1 (TAK1)‐binding protein 3 (TAB3) was initially characterized as an adapter protein essential for TAK1 activation in response to IL‐1β or TNFα, however, the physiological role of TAB3 in ovarian cancer tumorigenesis is still not fully understood. In this study, we evaluated the effects of TAB3 on ovarian cancer cell lines. Expressions of TAB3 and PCNA (proliferating cell nuclear antigen) were found to be gradually increased in EOC tissues and cell lines, by western blot analysis and qRT‐PCR. Distribution of TAB3 was further analysed by immunohistochemistry. In vitro, knockdown of TAB3 expression in HO8910 or SKOV3 ovarian cancer cells significantly inhibited bioactivity of ovarian cancer cells, including proliferation and cell‐cycle distribution, and promoted chemical sensitivity to cisplatin and paclitaxel treatment via inhibiting NF‐κB pathways. In conclusion, our study strongly suggests a novel function of TAB3 as an oncogene that could be used as a biomarker for ovarian cancer. It provides a new insight into the potential mechanism for therapeutic targeting, in chemotherapy resistance, common in ovarian cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号