首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3752篇
  免费   253篇
  国内免费   4篇
  4009篇
  2023年   22篇
  2022年   68篇
  2021年   138篇
  2020年   51篇
  2019年   64篇
  2018年   92篇
  2017年   69篇
  2016年   109篇
  2015年   158篇
  2014年   182篇
  2013年   248篇
  2012年   278篇
  2011年   311篇
  2010年   180篇
  2009年   122篇
  2008年   179篇
  2007年   165篇
  2006年   145篇
  2005年   120篇
  2004年   127篇
  2003年   102篇
  2002年   87篇
  2001年   84篇
  2000年   62篇
  1999年   72篇
  1998年   28篇
  1997年   20篇
  1995年   25篇
  1994年   17篇
  1993年   23篇
  1992年   37篇
  1991年   49篇
  1990年   29篇
  1989年   38篇
  1988年   29篇
  1987年   33篇
  1986年   28篇
  1985年   23篇
  1984年   23篇
  1983年   24篇
  1982年   22篇
  1980年   18篇
  1979年   38篇
  1978年   18篇
  1977年   23篇
  1974年   22篇
  1973年   22篇
  1972年   20篇
  1969年   16篇
  1967年   16篇
排序方式: 共有4009条查询结果,搜索用时 15 毫秒
161.
162.
The green peach aphid (GPA) (Myzus persicae Sülzer) is an important sap-sucking pest of a large variety of plants, including Arabidopsis thaliana. Arabidopsis utilizes a combination of defenses that deter insects from settling on the plant, limit insect feeding and curtail insect reproduction. We demonstrate that the previously uncharacterized Arabidopsis MPL1 (MYZUS PERSICAE-INDUCED LIPASE1) gene has an important role in defense against the GPA. MPL1 expression was rapidly induced to high level in GPA-infested plants. Furthermore, the GPA population was larger on the mpl1 mutant than the wild-type (WT) plant. In contrast, constitutive over-expression of MPL1 from the Cauliflower mosaic virus 35S gene promoter curtailed the size of the GPA population. Insect settling and feeding behavior were unaffected on the mpl1 mutant. However, compared with the phloem-sap enriched petiole exudate from the WT plant, mpl1 petiole exudate was deficient in an activity that restricts insect reproduction on a synthetic diet. Furthermore, MPL1 was required for the heightened accumulation of an antibiotic activity in petiole exudate of the Arabidopsis ssi2 mutant, which exhibits enhanced resistance to GPA. These results indicate that MPL1 has an essential function in antibiosis against GPA. The MPL1 protein exhibits homology to lipases and recombinant MPL1 has lipase activity, thus suggesting that a MPL1-dependent lipid, or a product thereof, has an important role in antibiosis against GPA.  相似文献   
163.
Acute ethanol intoxication and exposure (AE) has been known to impair wound healing and associated angiogenesis. Here, we found that AE diminished the formation of novel reparative lipid mediator 14S,21‐dihydroxy‐docosa‐4Z,7Z,10Z,12E,16Z,19Z‐hexaenoic acid (14S,21‐diHDHA) and its biosynthetic intermediate 14S‐hydroxy‐DHA (14S‐HDHA) from docosahexaenoic acid (DHA) in murine wounds. However, AE did not reduce the formation of DHA and the intermediate 21‐HDHA. These results indicate that in the biosynthetic pathways of 14S,21‐diHDHA in wounds, AE suppresses the 14S‐hydroxy‐generating activity of 12‐lipoxygenase‐like (LOX‐like), but does not suppress the 21‐hydroxy‐generating activity of cytochrome P450 and DHA‐generating activities. The AE‐suppression of 12‐LOX‐like activity was further confirmed by the diminished formation of 12‐hydroxy‐eicosatetraenoic acid in wounds under AE. Supplementing 14S,21‐diHDHA to wounds rescued the AE‐impaired healing and vascularization. 14S,21‐diHDHA restored AE‐impaired processes of angiogenesis in vitro: endothelial cell migration, tubulogenesis, and phosphorylation of p38 mitogen‐activated protein kinase (MAPK). Taken together, the suppression of 14S,21‐diHDHA formation is responsible, at least partially, for the AE‐impairment of cutaneous wound healing and angiogenesis. Supplementing 14S,21‐diHDHA to compensate its deficit in AE‐impaired wounds rescues the healing and angiogenesis. These results provide a novel mechanistic insight for AE‐impaired wound healing that involves the necessary roles of 14S,21‐diHDHA. They also offer leads for developing 14S,21‐diHDHA‐related therapeutics to ameliorate AE‐impairment of wound healing. J. Cell. Biochem. 111: 266–273, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
164.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K(+)-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K(+) concentrations ([K(+)]o). We found that Kir4.1 is regulated by K(+)o. Increased [K(+)]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K(+) from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K(+)o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs(+) and Ba(2+) substitute for K(+) and prevent deactivation of the channel in the absence of K(+)o. Cs(+) blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb(+) and NH4(+) permeate Kir4.1, only Rb(+) is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel's sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4(+) to permeate the channel without inducing these changes.  相似文献   
165.
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.  相似文献   
166.
Lanthanides such as La(3+) and Gd(3+) are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La(3+) and Gd(3+) on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 microM La(3+) (or Gd(3+)) through a 10-microm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 microM) of La(3+) (or Gd(3+)) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 microM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the L(beta') to P(beta') phase transition temperature of DPPC-MLV increased with an increase in La(3+) concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La(3+) concentration. Thereby, the interaction of La(3+) (or Gd(3+)) on the external monolayer membrane of the GUV induces a decrease in its area (A(ex)), whereas the area of the internal monolayer membrane (A(in)) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (DeltaA=A(ex)-A(in)).  相似文献   
167.
Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification‐rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false‐positive rates and statistical power to detect rate variation. We apply the PRC method to the well‐studied radiation of North American Plethodon salamanders, and support the inference that the large‐bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders.  相似文献   
168.
Plasmonics - We demonstrate the structural reorganization of gold nanorods (GNRs) that could fine-tune localized surface plasmon resonance (LSPR) by using modified wet chemical synthesis on the...  相似文献   
169.
The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus–host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.  相似文献   
170.
Several vitamin A compounds have been tested for their ability to suppress formation of DNA adduct by the carcinogen benzo[a]pyrene (B[a]P) in an in vitro reaction catalyzed by rat liver microsomes. Retinol, retinal, 3-dehydroretinol and 3-hydroxyretinol were found to be effective inhibitors of adduct formation. Certain carotenoids that are precursors of these retinoids also displayed considerable inhibitory capacity. Carotenoids and the 3-substituted retinoids appeared to modulate the DNA adduct formation exclusively through their action on microsomal enzymes, since an effective inhibition in each case was observed on the formation of B[a]P-7,8-diol, a proximate carcinogenic metabolite of B[a]P. Unsubstituted retinoids, on the other hand, had marginal effect on enzymes but were found effective in accelerating inactivation of B[a]P-7,8-diol-9,10-epoxide, the ultimate carcinogenic metabolite that binds to DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号