首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
31.
The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).  相似文献   
32.
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.  相似文献   
33.
34.
W Zou  NP Restifo 《Nature medicine》2012,18(8):1177-1178
  相似文献   
35.
36.
Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.  相似文献   
37.
CD8+ T lymphocytes that specifically recognize tumor cells can be isolated and expanded ex vivo. While the lytic properties of these cells have been well described, their fate upon encounter with cognate tumor is not known. We performed reverse 51Cr release assays in which the lymphocyte effectors rather than the tumor cell targets were radioactively labeled. We found that melanoma tumor cells caused the apoptotic death of tumor-specific T cells only upon specific MHC class I-restricted recognition. This death was entirely blockable by the addition of an Ab directed against the Fas death receptor (APO-1, CD95). Contrary to the prevailing view that tumor cells cause the death of anti-tumor T cells by expressing Fas ligand (FasL), our data suggested that FasL was instead expressed by T lymphocytes upon activation. While the tumor cells did not express FasL by any measure (including RT-PCR), functional FasL (as well as FasL mRNA) was consistently found on activated anti-tumor T cells. We could successfully block the activation-induced cell death with z-VAD-fmk, a tripeptide inhibitor of IL-1 beta-converting enzyme homologues, or with anti-Fas mAbs. Most importantly, these interventions did not inhibit T cell recognition as measured by IFN-gamma release, nor did they adversely affect the specific lysis of tumor cell targets. These results imply that Fas-mediated activation-induced cell death could be a limiting factor in the in vivo efficacy of adoptive transfer of class I-restricted CD8+ T cells and provide a means of potentially enhancing their growth in vitro as well as their function in vivo.  相似文献   
38.
Antitumor T cells often recognize targets that are nonmutated "self" tissue differentiation Ags, but the relative impact of Ag expression by normal and transformed tissue for a human self/tumor Ag has not been studied. To examine the influence of self-tolerance mechanisms on the function of self/tumor-specific T cell responses in humans, we sought to identify an Ag that was expressed, processed, and presented in an MHC-restricted fashion by tumor cells, but for which there was the human equivalent of a "knockout." In this study, we report the first immunological characterization of a melanoma/melanocyte differentiation Ag, called OA1, which meets these criteria. This Ag, an X chromosome-encoded melanoma/melanocyte differentiation Ag, was completely deleted in a male patient. Using a newly identified HLA-A*2402-restricted epitope (LYSACFWWL) to study T cell tolerance, we found that OA1-specific T cell reactivity was more than five SD higher in the knockout patient that in normal controls. These data provide compelling evidence for T cell tolerance to OA1 in humans. Most surprisingly, we found elevated levels of OA1-specific T cells in patients with metastatic malignant melanoma, indicating that the tumor-bearing state partially reversed tolerance observed in normal (non-"knockout") individuals. Taken together, these findings indicated that tolerance can exist for self/tumor Ags in humans, and that this tolerance could be partially abrogated by the growth of the tumor, increasing the reactivity of tumor Ag-specific T cells. Thus, the tumor-bearing state reverses, in part, the tolerance of T cells that results from the normal expression of tissue differentiation Ags.  相似文献   
39.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   
40.
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号