首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   105篇
  2023年   7篇
  2022年   14篇
  2021年   29篇
  2020年   24篇
  2019年   15篇
  2018年   28篇
  2017年   21篇
  2016年   33篇
  2015年   58篇
  2014年   52篇
  2013年   71篇
  2012年   78篇
  2011年   62篇
  2010年   46篇
  2009年   46篇
  2008年   62篇
  2007年   50篇
  2006年   57篇
  2005年   47篇
  2004年   50篇
  2003年   47篇
  2002年   34篇
  2001年   17篇
  2000年   29篇
  1999年   24篇
  1998年   14篇
  1997年   15篇
  1996年   7篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   17篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1987年   8篇
  1986年   13篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1980年   9篇
  1979年   6篇
  1975年   7篇
  1973年   4篇
  1971年   4篇
  1970年   3篇
  1969年   4篇
  1966年   3篇
排序方式: 共有1242条查询结果,搜索用时 15 毫秒
41.
Both coral‐associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co‐occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole‐ecosystem scale.  相似文献   
42.
Firewood and charcoal are used on a daily basis both in rural areas and in cities. This type of energy is produced by one of the most ancient traditional methods, known as coppice, which harvest tree sprouts. There is controversy about its effects on forests: it preserves populations and tree cover of species used, but reduces density, inhibits sexual reproduction and generates genetic erosion. We inquired if it was possible to identify a loss of genetic diversity in oak populations traditionally used for charcoal by the Zongolica Nahuas in Veracruz state, Mexico. We studied populations of Quercus laurina, Quercus calophylla and Quercus rugosa in three different altitudes. Molecular analysis with eight nuclear codominant microsatellites was performed to determine the diversity, structure and gene flow of these species. Results for Q. laurina were Na = 8.458, I = 1.766, Ho = 0.679, polymorphism = 100%, Fis = 0.079, with intraindividual variation of 81.55%. For Q. calophylla: Na = 7.250, I = 1.563, Ho = 0.646, polymorphism = 91.67%, Fis = 0.083, with intraindividual variation of 83.80%. For Q. rugosa: Na = 6.958, I = 1.510, Ho = 0.574, polymorphism = 91.67%, Fis = 0.204, with intraindividual variation of 81.99%; this species shows signals of an early genetic isolation process. Our findings indicate that Quercus genetic diversity for the three species is high and comparable with oak species in Mexico and worldwide. We conclude that at the present, coppice is preserving a historical diversity in adult trees kept alive through sprouting. Nonetheless, problems with coppice systems elsewhere, unregulated harvesting and expansion of pine plantation in the region suggest that further studies, hand in hand with a landscape management approach that improve charcoal and firewood production, may be valuable for Sierra de Zongolica genetic biodiversity conservation.  相似文献   
43.
The ecology of the young stages of allis shad Alosa alosa is poorly documented, although they can be exposed to many pressures during their freshwater phase and their downstream migration. When passing through systems such as the Gironde-Garonne-Dordogne watershed (GGD, SW France), they can be subjected to high temperatures and low levels of oxygen (hypoxia). The aim of this work is to assess the tolerance of young Alosa alosa at four ages (c. 10, 30, 60 and 85 days old) by challenging them to different temperatures (18, 22, 26 and 28°C) together with decreasing oxygen saturation levels (from 100% to 30%). Survival of the 10-day-old individuals was not influenced by oxy-thermic conditions, but high stress levels were detected and perhaps this age class was too fragile regarding the constraint of the experimental design. Survival at 30 and at 60 days old was negatively influenced by the highest temperatures tested alone (from 26°C and from 28°C, respectively) but no effect was detected at 85 days old up to 28°C. A combined effect of temperature and oxygen level was highlighted, with heat accelerating survival decrease when associated with oxygen level depletion: essentially, survival was critical (<50%) at 30 days old at temperature ≥22°C together with 30% O2; at 60 days old, at temperature = 28°C with 30% O2; at 85 days old, at temperature ≥26°C with ≤40% O2. Tolerance to oxy-thermic pressures appeared to be greater among the migratory ages (60 and 85 days old) than among the 30-day-old group. Based on environmental data recorded in the GGD system and on our experimental results, an exploratory analysis allowed a discussion of the possible impact of past oxy-thermic conditions on the local population dynamics between 2005 and 2018. The oxy-thermic conditions that may affect Alosa alosa at ages when they migrate downstream (60 and 85 days old) were not frequently recorded in this period, except in cases of extreme episodes of heat together with hypoxia that occurred in some years, in summertime in the turbidity maximum zone of the Gironde estuary (particularly in the year 2006). Interestingly, oxy-thermic conditions that are likely to threaten the 30-day-old individuals occurred more frequently in the lower freshwater parts of the GGD system between the years 2005 and 2018. In the context of climate change, a general increase in temperature is predicted, as well as more frequent and severe hypoxic events, therefore we suggest that local Alosa alosa population recruitment could encounter critical oxy-thermic conditions more frequently in the future if no adaptive management of water resources occurs.  相似文献   
44.
45.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30?kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
46.
47.
48.
Magnetic fields (MFs) have been used as an external stimulus to increase cell proliferation in chondrocytes and extracellular matrix (ECM) synthesis of articular cartilage. However, previously published studies have not shown that MFs are homogeneous through cell culture systems. In addition, variables such as stimulation times and MF intensities have not been standardized to obtain the best cellular proliferative rate or an increase in molecular synthesis of ECM. In this work, a stimulation device, which produces homogeneous MFs to stimulate cell culture surfaces was designed and manufactured using a computational model. Furthermore, an in vitro culture of primary rat chondrocytes was established and stimulated with two MF schemes to measure both proliferation and ECM synthesis. The best proliferation rate was obtained with an MF of 2 mT applied for 3 h, every 6 h for 8 days. In addition, the increase in the synthesis of glycosaminoglycans was statistically significant when cells were stimulated with an MF of 2 mT applied for 5 h, every 6 h for 8 days. These findings suggest that a stimulation with MFs is a promising tool that could be used to improve in vitro treatments such as autologous chondrocyte implantation, either to increase cell proliferation or stimulate molecular synthesis. Bioelectromagnetics. 2020;41:41–51 © 2019 Bioelectromagnetics Society  相似文献   
49.
50.
Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号