首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
排序方式: 共有48条查询结果,搜索用时 126 毫秒
11.
Peroxidative modification of phospholipids in myocardial membranes   总被引:2,自引:0,他引:2  
Rat heart myocardial membranes exposed to the free radical generating system, Fe2+/ascorbate, undergo lipid peroxidation as evidenced by the accumulation of thiobarbituric acid-reactive substances, loss of polyunsaturated fatty acids from phospholipids, and formation of conjugated dienes and fluorescent substances. In addition, the treated membranes exhibit a dramatic decrease in extractable phospholipids. This decrease is even more pronounced in individual phospholipid classes isolated by high-performance liquid chromatography. The decrease in lipid phosphorus under oxidant stress is accompanied by an increase in the phosphorus content of the aqueous phase after Folch extraction and by an even greater increase of phosphorus in the protein residue. In addition, increased amounts of saturated and monounsaturated fatty acyl groups are found in the protein residue of Fe2+/ascorbate-treated membranes. Extraction of the oxidant-treated membranes with acidic solvents does not enhance the recovery of phospholipids and neither does treatment with detergents, trypsin, and chymotrypsin prior to lipid extraction. However, treatment with the bacterial protease, Pronase, markedly enhances the recovery of phospholipids from the peroxidized membranes. These results indicate that membrane phospholipids undergoing free radical-induced peroxidation may form lipid-protein adducts, which renders them inextractable with lipid solvents.  相似文献   
12.
Reactive oxygen species (ROS) generated by activated leukocytes play an important role in the disruption of endothelial cell (EC) integrity, leading to barrier dysfunction and pulmonary edema. Although ROS modulate cell signaling, information remains limited regarding the mechanism(s) of ROS-induced EC barrier dysfunction. We utilized diperoxovanadate (DPV) as a model agent to explore the role of tyrosine phosphorylation in the regulation of EC barrier function. DPV disrupted EC barrier function in a dose-dependent manner. Tyrosine kinase inhibitors, genistein, and PP-2, a specific inhibitor of Src, reduced the DPV-mediated barrier dysfunction. Consistent with these results, DPV-induced Src activation was attenuated by PP-2. Furthermore, DPV increased the association of Src with cortactin and myosin light chain kinase, indicating their potential role as cytoskeletal targets for Src. Transient overexpression of either wild-type Src or a constitutively active Src mutant potentiated the DPV-mediated decline in barrier dysfunction, whereas a dominant negative Src mutant attenuated the response. These studies provide the first direct evidence for Src involvement in DPV-induced EC barrier dysfunction.  相似文献   
13.
Oxygen consumption rate (OCR) and generation of superoxide and nitric oxide (NO) in mouse aortic endothelial cells (MAECs) treated with lipopolysaccharide (LPS) were studied. The OCR was determined in cell suspensions at 37 °C by electron paramagnetic resonance (EPR) spectroscopy. LPS significantly altered the OCR in a dose and time-dependent fashion. The OCR was significantly elevated immediately following the treatment of MAECs with LPS (5 and 10 μg/ml) and NADPH (100 μM) whereas the same was depressed 1 h after exposure to similar conditions of incubation. Under similar experimental conditions, superoxide generation was also determined by EPR spectroscopy and cytochrome c reduction assays. A marginal increase in the superoxide production was observed when the cells were treated with LPS and NADPH alone whereas the same was further enhanced significantly when the cells were treated with LPS and NADPH together. The increase in oxygen consumption and superoxide production caused by LPS was inhibited by diphenyleneiodonium (DPI), suggesting the involvement of NAD(P)H oxidase. A significant increase in the NO production by MAECs was noticed 1 h after treatment with LPS and was inhibited by L-NAME, further suggesting the involvement of nitric oxide synthase (NOS). Thus, on a temporal scale, LPS-induced alterations in oxygen consumption by MAECs may be under the control of dual regulation by NAD(P)H oxidase and NOS. (Mol Cell Biochem 278: 119–127, 2005)  相似文献   
14.
Adiponectin (Ad), an adipokine exclusively secreted by the adipose tissue, has emerged as a paracrine metabolic regulator as well as a protectant against oxidative stress. Pharmacological approaches of protecting against clinical hyperoxic lung injury during oxygen therapy/treatment are limited. We have previously reported that Ad inhibits the NADPH oxidase-catalyzed formation of superoxide from molecular oxygen in human neutrophils. Based on this premise, we conducted studies to determine whether (i) exogenous Ad would protect against the hyperoxia-induced barrier dysfunction in the lung endothelial cells (ECs) in vitro, and (ii) endogenously synthesized Ad would protect against hyperoxic lung injury in wild-type (WT) and Ad-overexpressing transgenic (AdTg) mice in vivo. The results demonstrated that exogenous Ad protected against the hyperoxia-induced oxidative stress, loss of glutathione (GSH), cytoskeletal reorganization, barrier dysfunction, and leak in the lung ECs in vitro. Furthermore, the hyperoxia-induced lung injury, vascular leak, and lipid peroxidation were significantly attenuated in AdTg mice in vivo. Also, AdTg mice exhibited elevated levels of total thiols and GSH in the lungs as compared with WT mice. For the first time, our studies demonstrated that Ad protected against the hyperoxia-induced lung damage apparently through attenuation of oxidative stress and modulation of thiol-redox status.  相似文献   
15.
Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLD1 and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERK1/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase C and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.  相似文献   
16.
Bacterial species and evolution: Theoretical and practical perspectives   总被引:2,自引:0,他引:2  
A discussion of the species problem in modern evolutionary biology serves as the point of departure for an exploration of how the basic science aspects of this problem relate to efforts to map bacterial diversity for practical pursuits—for prospecting among the bacteria for useful genes and gene-products. Out of a confusing array of species concepts, the Cohesion Species Concept seems the most appropriate and useful for analyzing bacterial diversity. Techniques of allozyme analysis and DNA fingerprinting can be used to put this concept into practice to map bacterial genetic diversity, though the concept requires minor modification to encompass cases of complete asexuality. Examples from studies of phenetically definedBacillus species provide very partial maps of genetic population structure. A major conclusion is that such maps frequently reveal deep genetic subdivision within the phenetically defined specles; divisions that in some cases are clearly distinct genetic species. Knowledge of such subdivisions is bound to make prospecting within bacterial diversity more effective. Under the general concept of genetic cohesion a hypothetical framework for thinking about the full range of species conditions that might exist among bacteria is developed and the consequences of each such model for species delineation, and species identification are discussed. Modes of bacterial evolution, and a theory of bacterial speciation with and without genetic recombination, are examined. The essay concludes with thoughts about prospects for very extensive mapping of bacterial diversity in the service of future efforts to find useful products. In this context, evolutionary biology becomes the handmaiden of important industrial activities. A few examples of past success in commercializing bacterial gene-products from species ofBacillus and a few other bacteria are reviewed.  相似文献   
17.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   
18.
A long-chain N-acylethanolamine (N-oleoyl-2-aminoethanol) is shown to inhibit the production of thiobarbituric acid-reactive substances in rat heart mitochondria treated with Fe2+ or Fe3+/ADP. The inhibition is concentration-dependent in the range 50-150 microM of the agent and can be nearly complete depending on the type and amount of the free radical-generating system. Structural analogues of N-acylethanolamine are inhibitory as well, but neither oleic acid nor ethanol-amine has measurable effects. N-Oleoyl-2-aminoethanol affects peroxidation of linoleic acid micelles only minimally and has no effect on deoxyribose peroxidation.  相似文献   
19.
20.
Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号