首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   57篇
  693篇
  2021年   12篇
  2020年   8篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   17篇
  2014年   16篇
  2013年   21篇
  2012年   36篇
  2011年   36篇
  2010年   17篇
  2009年   11篇
  2008年   21篇
  2007年   25篇
  2006年   26篇
  2005年   16篇
  2004年   16篇
  2003年   20篇
  2002年   13篇
  2001年   20篇
  2000年   11篇
  1999年   13篇
  1998年   6篇
  1995年   6篇
  1994年   11篇
  1993年   7篇
  1992年   28篇
  1991年   19篇
  1990年   16篇
  1989年   12篇
  1988年   11篇
  1987年   14篇
  1986年   11篇
  1985年   12篇
  1984年   7篇
  1983年   9篇
  1981年   7篇
  1979年   8篇
  1978年   10篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1971年   11篇
  1969年   8篇
  1968年   5篇
  1967年   5篇
  1964年   9篇
  1963年   5篇
排序方式: 共有693条查询结果,搜索用时 15 毫秒
71.
Human genome project: pharmacogenomics and drug development   总被引:2,自引:0,他引:2  
Now that all 30,000 or so genes that make up the human genome have been deciphered, pharmaceutical industries are emerging to capitalize the custom based drug treatment. Understanding human genetic variation promises to have a great impact on our ability to uncover the cause of individual variation in response to therapeutics. The study of association between genetics and drug response is called pharmacogenomics. The potential implication of genomics and pharmacogenomics in clinical research and clinical medicine is that disease could be treated according to the interindividual differences in drug disposition and effects, thereby enhancing the drug discovery and providing a stronger scientific basis of each patient's genetic constitution. Sequence information derived from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Detection of these human polymorphisms will fuel the discipline of pharmacogenomics by developing more personalized drug therapies. A greater understanding of the way in which individuals with a particular genotype respond to a drug allows manufacturers to identify population subgroups that will benefit most from a particular drug. The increasing emphasis on pharmacogenomics is likely to raise ethical and legal questions regarding, among other things, the design of research studies, the construction of clinical trials and the pricing of drugs.  相似文献   
72.
The envelope gene of HTLV-III, the retrovirus directly linked to AIDS, encodes a protein of 856 amino acids. Our sequence analysis of the cloned HTLV-III (HXB-3) env gene and its comparison with other isolates reveal significant divergence, especially in the external portion of this protein. A large segment of the env gene (1800 bp) was inserted into the expression vector pEV-vrf3, and a corresponding 68 kd protein, which encompasses both the extracellular and the membrane-associated regions of the native protein, was produced in E. coli. Several smaller polypeptides, which appear to be internal initiation products, were also produced. All 50 AIDS patient sera obtained from different locations in the United States specifically recognized the bacterially synthesized envelope proteins, as judged by Western blots. This suggests that these proteins will be useful for the diagnosis of HTLV-III infection and possibly as a vaccine against AIDS.  相似文献   
73.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   
74.
The moderately pyridoxine (vitamin B6)-deficient male rat was introduced by us as an animal model (B6DHT) for the study of hypertension. Hypertension in this rat is associated with increased sympathetic stimulation. Arterial segments from B6DHT rats maintained a higher resting tone. The influx of 45calcium into intracellular compartment of the vascular smooth muscle of the caudate artery of B6DHT rats was also enhanced. Administration of pyridoxine attenuated the hypertension in B6DHT rats as well as in genetic or dietary-induced moderately hypertensive conditions such as in the Zucker obese rat and sucrose or low calcium-fed rats. However, pyridoxine did not have any effect or the spontaneously hypertensive rat. All classes of calcium channel blockers were effective in lowering the systolic blood pressure of B6DHT rats. The increased in vitro influx of45 calcium into intracellular compartment of artery segments of B6DHT rats as well as the BAY K 8644-induced influx of45 calcium into artery segments from normal rats were blocked by pyridoxal phosphate as well as by dihydropyridine-sensitive calcium channel blockers (DHP). Pyridoxal phosphate (PLP) in vitro enhances the binding of calcium channel antagonists to membrane preparations from vascular tissue. PLP corrects the membrane abnormality in responsive hypertensive conditions and thus, could be an endogenous modulator of DHP - sensitive calcium channels.  相似文献   
75.
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.

Ca2+-dependent protein kinase 29 directly phosphorylates the hydrophilic loop of PIN-FORMED proteins to modulate their intracellular trafficking and Arabidopsis development.  相似文献   
76.
Sulfonamide derivatives serve as potent inhibitors of carbonic anhydrases (CAs), and a few such inhibitors have been currently used as drugs for the treatment of different pathogenic conditions in humans. In pursuit of designing the isozyme-specific inhibitors of human CAs, we observed that the fluorescence spectral properties and binding profiles of a fluorogenic sulfonamide derivative, 5-(dimethylamino)-1-naphthalenesulfonamide (dansylamide, DNSA), were markedly different between the recombinant forms of human carbonic anhydrase I (hCA I) and II (hCA II). The kinetic evaluation of the overall microscopic pathways for the binding of DNSA to hCA I versus hCA II revealed that the protein isomerization step served as a major determinant of the above discrepancy. Arguments are presented that the detailed structural-functional investigations of enzyme-ligand interactions may provide insights into designing the isozyme-specific inhibitors of CAs.  相似文献   
77.
Mycobacterium tuberculosis (Mtb) causes death of 2-3 million people annually and is considered one of the most successful intracellular pathogens to persist inside the host macrophage. Recent studies have implicated the role of RD-1 region of Mtb genome in the mycobacterial pathogenesis. The role of RD-1-encoded secretory proteins of Mtb in modulation of macrophage function has not been investigated in detail. Here we show that RD-1 encoded two major secretory proteins, namely, culture filtrate protein-10 kDa (CFP-10) and early secreted antigenic target-6 kDa (ESAT-6), and their 1:1 CFP-10:ESAT6 complex inhibit production of reactive oxidative species (ROS) in RAW264.7 cells. These proteins also downregulated the bacterial lipopolysaccharide (LPS)-induced ROS production, which, in turn, downregulated LPS-induced nuclear factor-kappaB (NF-kappaB) p65 DNA-binding activity, as well as inhibited the NF-kappaB-dependent reporter gene (chloramphenicol acetyl transferase) expression in the treated macrophages. Moreover, addition of N-acetyl cysteine, which is a scavenger of ROS, also inhibited LPS-induced reporter gene expression by scavenging the ROS, thereby preventing NF-kappaB transactivation. These studies indicate that the secretory proteins CFP-10, ESAT-6 and the CFP10:ESAT6 complex of Mtb can inhibit LPS-induced NF-kappaB-dependent gene expression via downregulation of ROS production.  相似文献   
78.
Pathways of absorption of retinal and retinoic acid in the rat   总被引:5,自引:0,他引:5  
The chemical and anatomical pathways of absorption of dietary retinal, retinoic acid, and retinol were examined in rats containing lymph, bile, and duodenal cannulae. The experiments were designed to maintain physiological conditions to the greatest possible extent. In each rat an uninterrupted flow of bile into the duodenum was maintained by connecting the duodenal cannula to the bile duct of a second rat. Labeled vitamin A compounds were introduced into the duodenum in very small amounts (7-14 micrograms) in the form of a bile-lipid mixture resembling normal intestinal contents. Under these conditions, most (70-80%) of the radioactivity recovered after the feeding of labeled retinol or retinal was found in the lymph, predominantly in saturated retinyl esters. In contrast, 92-95% of the radioactivity recovered after the feeding of labeled retinoic acid was found in the bile, and was contained in a mixture of polar metabolites, most of them more polar than free retinoic acid. Two-thirds of the small amount of radioactivity found in lymph after retinoic acid-(14)C feeding was in the form of free retinoic acid. The results indicate that under normal conditions the major pathway of retinal absorption involves its reduction to retinol, which is then esterified and transported via the lymphatics in a manner similar to that of dietary retinol. A small proportion of retinal is apparently normally oxidized, and is then transported via the portal vein and excreted in the bile in a manner similar to that of dietary retinoic acid. The relative importance, in quantitative terms, of these two pathways of retinal metabolism can vary, depending on the status of the animal.  相似文献   
79.
Very few studies have been carried out on the role of liver macrophages (Kupffer cells) during the course of hepatic amoebiasis. The kinetics of phagocytic activity of Kupffer cells and blood monocytes was studied in guinea pigs intra-mesenterically infested with Entamoeba histolytica. The phagocytic capacity of blood monocytes of normal animals was comparatively lower than Kupffer cells for both latex and haemolysin coated sheep red blood cells. Significant decline in phagocytic response of Kupffer cells and blood monocytes of infected animals was observed right from 2nd post infection day and it kept on decreasing with the progress of infection. Depression in phagocytic response of Kupffer cells and blood monocytes was more marked in those animals who had higher grades of pathological lesions. Hence, an inverse correlation was obtained between the phagocytic capacity and severity of amoebic lesions (P less than 0.01). The significance of depression in phagocytic response of Kupffer cells and blood monocytes may be responsible for the development of hepatic lesions.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号