首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   143篇
  国内免费   430篇
  2023年   24篇
  2022年   59篇
  2021年   71篇
  2020年   69篇
  2019年   100篇
  2018年   62篇
  2017年   43篇
  2016年   58篇
  2015年   58篇
  2014年   83篇
  2013年   105篇
  2012年   140篇
  2011年   122篇
  2010年   97篇
  2009年   114篇
  2008年   130篇
  2007年   82篇
  2006年   105篇
  2005年   73篇
  2004年   69篇
  2003年   78篇
  2002年   74篇
  2001年   75篇
  2000年   40篇
  1999年   25篇
  1998年   17篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1994年   10篇
  1993年   8篇
  1992年   14篇
  1991年   11篇
  1990年   15篇
  1989年   16篇
  1988年   21篇
  1987年   11篇
  1986年   13篇
  1985年   10篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1976年   9篇
  1964年   6篇
  1961年   5篇
  1959年   5篇
排序方式: 共有2233条查询结果,搜索用时 250 毫秒
91.
Micromolar concentrations of the flavonoid kaempferol were found to efficiently block cerebellar granule cell (CGC) death through low K+-induced apoptosis, as demonstrated by prevention of the activation of caspase-3, internucleosomal DNA fragmentation, and chromatin condensation, without a significant rise in intracellular free Ca2+ concentration. Half of the maximum protection against CGC apoptosis was attained with 8 +/- 2 microM kaempferol. Reactive oxygen species (ROS) were monitored with 2',7'-dichlorodihydrofluorescein diacetate. Quantitative analysis of intracellularly and extracellularly oriented ROS production up to 3 h from the onset of low K+-induced CGC apoptosis was carried out with acquired digital fluorescence microscopy images of CGC in culture plates using a CCD camera, and also with fluorescence measurements of resuspended CGCs. In both cases, nearly 90% of ROS production by CGCs during the early stages (up to 3 h) after induction of low-K+ apoptosis occurs at the plasma membrane. Kaempferol, at concentrations that blocked CGC apoptosis, has been found to be a particularly potent blocker of extracellularly oriented ROS production by CGCs, and to inhibit the ascorbate-dependent NADH oxidase and superoxide anion production activities of the neuronal plasma membrane redox chain.  相似文献   
92.
Displacement of the contractile protein tropomyosin from actin filament exposes the myosin-binding sites on actin, resulting in actin-myosin interaction and muscle contraction. The objective of the present study was to better understand the interaction of tropomyosin with heat shock protein (HSP)27 in contraction of smooth muscle cells of the colon. We investigated the possibility of a direct protein-protein interaction of tropomyosin with HSP27 and the role of phosphorylated HSP27 in this interaction. Immunoprecipitation studies on rabbit smooth muscle cells indicate that upon acetylcholine-induced contraction tropomyosin shows increased association with HSP27 phosphorylated at Ser82 and Ser78. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that the association of tropomyosin with HSP27 could be affected by HSP27 phosphorylation. In vitro binding studies with glutathione S-transferase (GST)-tagged HSP27 mutant proteins show that tropomyosin has greater direct interaction to phosphomimic HSP27 mutant compared with wild-type and nonphosphomimic HSP27. Our data suggest that, in response to a contractile agonist, HSP27 undergoes a rapid phosphorylation that may strengthen its interaction with tropomyosin. acetylcholine; fusion proteins; serine  相似文献   
93.
Using the patch-clamp technique it was found that the toxicity of the two wheat endosperm proteins puroindoline-a and alpha1-purothionin probably results from the dissipation of ion concentration gradients essential for the maintenance of cellular homeostasis.Abbreviations PIN-a puroindoline-a - PTH alpha1-purothionin Presented at the Biophysical Society Meeting on Ion Channels—from structure to disease held in May 2003, Rennes, France  相似文献   
94.
The incidence of hypertension increases during the late stages of aging; however, the vascular mechanisms involved are unclear. We investigated whether the late stages of aging are associated with impaired nitric oxide (NO)-mediated vascular relaxation and enhanced vascular contraction and whether oxidative stress plays a role in the age-related vascular changes. Aging (16 mo) male spontaneously hypertensive rats (SHR) nontreated or treated for 8 mo with the antioxidant tempol (1 mM in drinking water) or vitamin E (E; 5,000 IU/kg chow) and vitamin C (C; 100 mg. kg-1. day-1 in drinking water) and adult (12 wk) male SHR were used. After the arterial pressure was measured, aortic strips were isolated from the rats for measurement of isometric contraction. The arterial pressure and phenylephrine (Phe)-induced vascular contraction were enhanced, and the ACh-induced vascular relaxation and nitrite/nitrate production were reduced in aging compared with adult rats. In aging rats, the arterial pressure was nontreated (188 +/- 4), tempol-treated (161 +/- 6), and E + C-treated (187 +/- 1 mmHg). Phe (10-5 M) caused an increase in active stress in nontreated aging rats (14.3 +/- 1.0) that was significantly (P < 0.05) reduced in tempol-treated (9.0 +/- 0.7) and E + C-treated rats (9.8 +/- 0.6 x 104 N/m2). ACh produced a small relaxation of Phe contraction in nontreated aging rats that was enhanced (P < 0.05) in tempol- and E + C-treated rats. l-NAME (10-4 M), inhibitor of NO synthase, or ODQ (10-5 M), inhibitor of cGMP production in smooth muscle, inhibited ACh relaxation and enhanced Phe contraction in tempol- and E + C-treated but not the nontreated aging rats. ACh-induced vascular nitrite/nitrate production was not different in nontreated, tempol- and E + C-treated aging rats. Relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was smaller in aging than adult rats but was not different between nontreated, tempol- and E + C-treated aging rats. Thus, during the late stages of aging in SHR rats, an age-related inhibition of a vascular relaxation pathway involving not only NO production by endothelial cells but also the bioavailability of NO and the smooth muscle response to NO is partially reversed during chronic treatment with the antioxidants tempol and vitamins E and C. The data suggest a role for oxidative stress in the reduction of vascular relaxation and thereby the promotion of vascular contraction and hypertension during the late stages of aging.  相似文献   
95.
Fibrosis around the smooth muscle of asthmatic airway walls leads to irreversible airway obstruction. Bronchial epithelial cells release granulocyte/macrophage colony-stimulating factor (GM-CSF) in asthmatics and are in close proximity to airway smooth muscle cells (ASMC). The findings in this study demonstrate that GM-CSF induces confluent, prolonged, serum-deprived cultures of ASMC to increase expression of collagen I and fibronectin. GM-CSF also induced ASMC to increase the expression of transforming growth factor (TGF)-beta receptors type I, II, and III (TbetaR-I, TbetaR-II, TbetaR-III), but had no detectable effect on the release of TGF-beta1 by the same ASMC. The presence of GM-CSF also induced the association of TGF-beta1 with TbetaR-III, which enhances binding of TGF-beta1 to TbetaR-II. The induction of TbetaRs was parallel to the increased induction of phosphorylated Smad2 (pSmad2) and connective tissue growth factor (CTGF), indicative of TGF-beta-mediated connective tissue synthesis. Dexamethasone decreased GM-CSF-induced TbetaR-I, TbetaR-II, TbetaR-III, pSmad2, CTGF, collagen I, and fibronectin. In conclusion, GM-CSF increases the responsiveness of ASMC to TGF-beta1-mediated connective tissue expression by induction of TbetaRs, which is inhibited by corticosteroids.  相似文献   
96.
Genes controlling antibacterial resistance may be important in the hygiene hypothesis, which states that lack of bacterial infections during childhood would favor development of allergic disease. We, therefore, studied whether Nramp1 (Slc11a1) alleles, which determine susceptibility (Nramp1(s)) or resistance (Nramp1(r)) to intracellular bacteria, affect the efficacy of heat-killed Mycobacterium vaccae in the treatment of allergic asthma in a mouse model. Treatment of OVA-sensitized Nramp1(s) mice with M. vaccae suppressed airway hyperresponsiveness, airway eosinophilia, Ag-specific IgE, and IL-4 and IL-5 production after OVA aerosol challenge. In contrast, M. vaccae hardly affected these parameters in Nramp1(r) mice. In addition, The Nramp1 gene affected both T cell-mediated responses to M. vaccae in vivo and the level of macrophage activation after stimulation with M. vaccae in vitro. In conclusion, the efficacy of M. vaccae in preventing allergic and asthmatic manifestations in a mouse model is strongly affected by Nramp1 alleles. These findings could have important implications for the future use of mycobacteria and their components in the prevention or treatment of allergic asthma. A new link is described between genes, the environment, and the development of allergy, in which the Nramp1 gene fine tunes the hygiene hypothesis.  相似文献   
97.
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.  相似文献   
98.
RNA interference in mammalian cells by chemically-modified RNA   总被引:24,自引:0,他引:24  
Braasch DA  Jensen S  Liu Y  Kaur K  Arar K  White MA  Corey DR 《Biochemistry》2003,42(26):7967-7975
RNA interference (RNAi) is proving to be a robust and versatile technique for controlling gene expression in mammalian cells. To fully realize its potential in vivo, however, it may be necessary to introduce chemical modifications to optimize potency, stability, and pharmacokinetic properties. Here, we test the effects of chemical modifications on RNA stability and inhibition of gene expression. We find that RNA duplexes containing either phosphodiester or varying numbers of phosphorothioate linkages are remarkably stable during prolonged incubations in serum. Treatment of cells with RNA duplexes containing phosphorothioate linkages leads to selective inhibition of gene expression. RNAi also tolerates the introduction of 2'-deoxy-2'-fluorouridine or locked nucleic acid (LNA) nucleotides. Introduction of LNA nucleotides also substantially increases the thermal stability of modified RNA duplexes without compromising the efficiency of RNAi. These results suggest that inhibition of gene expression by RNAi is compatible with a broad spectrum of chemical modifications to the duplex, affording a wide range of useful options for probing the mechanism of RNAi and for improving RNA interference in vivo.  相似文献   
99.
Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix   总被引:1,自引:0,他引:1  
Nuclear matrix, a key structure in the nuclear framework, appears to be a particularly responsive target during heat shock treatment of cells. We have previously shown that nuclear matrix is a preferential target for protein kinase CK2 signaling in the nucleus. The levels of CK2 in the nuclear matrix undergo dynamic changes in response to altered growth status in the cell. Here, we have demonstrated that CK2 targeting to the nuclear matrix is profoundly influenced by treatment of the cells to temperatures higher than 37 degrees C. Rapid increase in the nuclear matrix association of CK2 is observed when cells are placed at temperatures of 41 and 45 degrees C. This effect at 45 degrees C was higher than at 41 degrees C, and was time-dependent. Also, different cell lines behaved in a qualitatively similar manner though the quantitative responses differed. The modulations in the nuclear matrix associated CK2 in response to heat shock appear to be due to trafficking of the enzyme between cytosolic and nuclear compartments. In addition, it was noted that isolated nuclei subjected to heat shock also responded by a shuttling of the intrinsic CK2 to the nuclear matrix compartment. These results suggest that modulations in CK2 in the nuclear compartment in response to the heat stress occur not only by a translocation of the enzyme from the cytoplasmic compartment to the nuclear compartment, but also that there is a redistribution of the kinase within the nuclear compartment resulting in a preferential association with the nuclear matrix. The results support the notion that CK2 association with the nuclear matrix in response to heat shock may serve a protective role in the cell response to stress.  相似文献   
100.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号