首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   8篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
41.
α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.  相似文献   
42.

Background

Acute cholecystitis can be the result of retention of bile in the gallbladder with possible secondary infection and ischaemia. The aim of the present study was to investigate whether internal drainage of the gallbladder could protect against the development of acute cholecystitis in a pig model.

Materials and methods

Twenty pigs were randomized to either internal drainage (drained) or not (undrained). Day 0 acute cholecystitis was induced by ligation of the cystic artery and duct together with inoculation of bacteria. Four days later the pigs were killed and the gallbladders were removed and histologically scored for the presence of cholecystitis. Bile and blood samples were collected for bacterial culturing and biochemical analyses.

Results

The histological examination demonstrated statistical significant differences in acute cholecystitis development between groups, the degree of inflammation being highest in undrained pigs. There were no differences in bacterial cultures between the two groups.

Conclusion

Internal drainage of the gallbladder protected against the development of acute cholecystitis in the present pig model. These findings support the theory that gallstone impaction of the cystic duct plays a crucial role as a pathogenetic mechanism in the development of acute cholecystitis and suggest that internal drainage may be a way to prevent and treat acute cholecystitis.  相似文献   
43.
44.
45.
Developmental instability in morphological characters can occur during individual development due to various environmental stresses. Fluctuating asymmetry (FA) is often used as a measurement of developmental instability, but within-environment variation (CVe) is also considered an indicator of developmental instability. Cabbage aphid ( Brevicoryne brassicae ) populations were reared on zinc- (Zn) or cadmium- (Cd) contaminated cabbage and radish plants. Developmental instability indicators were measured and their relations with fitness were explored. Results revealed that cabbage aphids exposed to Cd and Zn displayed considerable developmental instability, particularly fluctuating asymmetry. Differences in developmental instability between the two metals were also detected, as well as differences between the two developmental instability measurements. For almost all measured traits, FA was greater on Cd- and Zn-contaminated compared to non-contaminated host plants. In contrast, CVe of some traits was greater on non-contaminated host plants, yet for other traits CVe was greater on contaminated host plants. There were also non-significant inverse relationships between FA and fitness of cabbage aphid populations. Due to weak correlations between FA and different patterns of two developmental instability measurements, this study does not support the hypothesis that developmental instability is a useful bioindicator of environmental quality.  相似文献   
46.
Bambuterol is a chiral carbamate known as selective inhibitor of butyrylcholinesterase (BChE). In order to relate bambuterol selectivity and stereoselectivity of cholinesterases to the active site residues, we studied the inhibition of recombinant mouse BChE, acetylcholinesterase (AChE) and six AChE mutants, employed to mimic BChE active site residues, by bambuterol enantiomers. Both enantiomers selectively inhibited BChE about 8000 times faster than AChE. The largest inhibition rate increase in comparison to AChE w.t. was observed with the F295L/Y337A mutant, showing that leucine 295 and alanine 337 are crucial residues in BChE for high bambuterol selectivity. All studied enzymes preferred inhibition by the R- over the S-bambuterol. The enlargement of the AChE choline binding site and of the acyl pocket by single or double mutations (Y337A, F295L/Y337A and F297I/Y337A) increased, in comparison to w.t. enzymes, inhibition rate constants of R- bambuterol more than that of S- bambuterol resulting in four times higher stereoselectivity. Peripheral site mutations (Y124Q and Y72N/Y124Q/Y337A) increased inhibition rate by S- more than R-bambuterol and consequently diminished the stereoselectivity.  相似文献   
47.
We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with Ki constants ranging from 9.4?μM to 6.4?mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π–π interaction of salmeterol’s benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.  相似文献   
48.
Type III secretion systems (TTSSs) are essential mediators of the interaction of many Gram-negative bacteria with human, animal or plant hosts. Extensive sequence and functional similarities exist between components of TTSS from bacteria as diverse as animal and plant pathogens. Recent crystal structure determinations of TTSS proteins reveal extensive structural homologies and novel structural motifs and provide a basis on which protein interaction networks start to be drawn within the TTSSs, that are consistent with and help rationalize genetic and biochemical data. Such studies, along with electron microscopy, also established common architectural design and function among the TTSSs of plant and mammalian pathogens, as well as between the TTSS injectisome and the flagellum. Recent comparative genomic analysis, bioinformatic genome mining and genome-wide functional screening have revealed an unsuspected number of newly discovered effectors, especially in plant pathogens and uncovered a wider distribution of TTSS in pathogenic, symbiotic and commensal bacteria. Functional proteomics and analysis further reveals common themes in TTSS effector functions across phylogenetic host and pathogen boundaries. Based on advances in TTSS biology, new diagnostics, crop protection and drug development applications, as well as new cell biology research tools are beginning to emerge.  相似文献   
49.
Synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy is a powerful bioanalytical technique for the simultaneous analysis of lipids, proteins, carbohydrates, and a variety of phosphorylated molecules within intact cells. SR-FTIR microspectroscopy can be used in the imaging mode to generate biospectroscopic maps of the distribution and intensity profiles of subcellular biomolecular domains at diffraction-limited spatial resolution. However, the acquisition of highly spatially resolved IR images of cells is not only a function of instrumental parameters (source brightness, sampling aperture size) but also the cell preparation method employed. Additionally, for the IR data to be biochemically relevant the cells must be preserved in a life-like state without introducing artefacts. In the present study we demonstrate, for the first time, the differences in biomolecular localizations observed in SR-FTIR images of cells fixed by formalin, formalin-critical point drying (CPD), and glutaraldehyde-osmium tetroxide-CPD, using the PC-3 prostate cancer cell line. We compare these SR-FTIR images of fixed cells to unfixed cells. The influence of chemical fixatives on the IR spectrum is discussed in addition to the biological significance of the observed localizations. Our experiments reveal that formalin fixation at low concentration preserves lipid, phosphate, and protein components without significantly influencing the IR spectrum of the cell.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号