首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  2018年   1篇
  2017年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   4篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
61.
Membrane transport changes in human lens epithelial (HLE‐B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, Ki, uptake of the K congener rubidium, Rbi, and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein‐kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2‐fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% Ki loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of Ki, and accompanying water, and Rbi uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 µM STP exposure, the cells lost ~40% water and ~60% Ki, respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and Ki loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4‐aminopyridine (4‐AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE‐B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro‐apoptotic STP‐activation of 4‐AP‐sensitive voltage‐gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110–122, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
62.
1. Three purported zinc metalloenzymes have been investigated from cell cultures of the fathead minnow (Pimephales promelas). 2. With the addition of increasingly higher concentrations of zinc to the tissue culture medium, the specific activity of LDH increased. 3. The results with MDH were equivocal. 4. The specific activity of alkaline phosphatase decreased in the presence of increasing amounts of zinc in the growth medium. 5. Zinc exogenously added to the LDH enzyme assay did not alter the LDH enzyme activity of cells grown without zinc.  相似文献   
63.
K-Cl cotransport (COT) is the coupled movement of K and Cl, present in most cells, associated with regulatory volume decrease, susceptible to oxidation and functionally overexpressed in sickle cell anemia. The aim of this study was to characterize the effect of the oxidant nitrite (NO2 ) on K-Cl COT. NO2 is a stable metabolic end product of the short-lived highly reactive free radical nitric oxide (NO), an oxidant and modulator of ion channels, and a vasodilator. In some systems, the response to NO2 is identical to that of NO. We hypothesized that NO2 activates K-Cl COT. Low potassium (LK) sheep red blood cells (SRBCs) were used as a model. The effect of various concentrations (10−6 to 10−1 m) of NaNO2 was studied on K efflux in hypotonic Cl and NO3 media, Cl-dependent K efflux (K-Cl COT), glutathione (GSH), and methemoglobin (MetHb) formation. In support of our hypothesis, K efflux and K-Cl COT were stimulated by increasing concentrations of NaNO2. Stimulation of K efflux was dependent upon external Cl and exhibited a lag phase, consistent with activation of K-Cl COT through a regulatory mechanism. Exposure of LK SRBCs to NaNO2 decreased GSH, an effect characteristic of a thiol-oxidizing agent, and induced MetHb formation. K-Cl COT activity was positively correlated with Methb formation. N-ethyl-maleimide (NEM), a potent activator of K-Cl COT, was used to assess the mechanism of NO2 action. The results suggest that NEM and NO2 utilize at least one common pathway for K-Cl COT activation. Since NaNO2 is also a well known vasodilator, the present findings suggest a role of K-Cl COT in vasodilation. Received: 15 January 1998/Revised: 3 September 1998  相似文献   
64.
65.
66.
67.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号