首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  2018年   1篇
  2017年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   4篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有67条查询结果,搜索用时 968 毫秒
11.
12.
Properties of the sliding disintegration response of demembranated tetrahymena cilia have been studied by measuring the spectrophotomeric response or turbidity of cilia suspensions at a wavelength of 350 nm relative to changes in the dynein substrate (MgATP(2-)) concentration. The maximum decrease in turbidity occurs in 20 muM ATP, and 90 percent of the decrease occurs in approximately 5.9 s. At lower ATP concentrations (1-20 muM), both the velocity and magnitude of the turbidity decreases are proportional to ATP concentration. The velocity data for 20 muM ATP permit construction of a reaction velocity curve suggesting that changes in turbidity are directly proportional to the extent and velocity of disintegration. At ATP concentrations more than 20 muM (50muM to 5mM), both velocity and magnitude of the turbidimetric response are reduced by approximately 50 percent. This apparent inhibition results in a biphasic response curve that may be related to activation of residual shear resistance or regulatory components at the higher ATP concentrations. The inhibitory effects of elevated ATP can be eliminated by mild trypsin proteolysis, whereupon the reaction goes to completion at any ATP concentration. The turbidimetric responses of the axoneme-substrate suspensions are consistent with the extent and type of axoneme disintegration revealed by electron microscope examination of the various suspensions, suggesting that the turbidimetric assay may prove to be a reliable means for assessing the state of axoneme integrity.  相似文献   
13.
Summary The effect of cell volume changes in human red cells on ouabain-insensitive net outward cation movements through 1) the Na–K and Li–K cotransport, 2) the Li–Na counter-transport system and 3) the furosemide-insensitive Na, K and Li pathway was studied. Cell volume was altered by changing a) the internal cation content (isosmotic method) or b) the external osmolarity of the medium (osmotic method). Na–K and Li–K cotransport were measured as the furosemide-sensitive Na or Li and K efflux into (Na, Li and K)-free (Mg-sucrose replacement) medium from cells loaded to contain approximately equal concentrations of Na and K, or a constant K/Li concentration ratio of 91, respectively. Li–Na countertransport was assayed as the Na-stimulated Li efflux from Li-loaded cells and net furosemide-insensitive outfluxes in (Na, Li and K)-free media containing 1mm furosemide. Swelling of cells by the isosmotic, but not by the osmotic method reduced furosemide-sensitive Na and Li but not K efflux by 80 and 86%, respectively. Changes in cell volume by both methods had no effect on Li–Na countertransport. The effects of cell volume changes were measured on the rate constants of ouabain- and furosemide-insensitive cation fluxes and were found to be complex. Isosmotic shrinkage more than doubled the rate constants of Na and Li efflux but did not affect that of K efflux. Osmotic shrinkage increased the K efflux rate constant by 50% only in cells loaded for countertransport. Isosmotic cell swelling specifically increased the K+ efflux rate constants both in cells loaded for cotransport and countertransport assays while no effect was observed in cells swollen by the osmotic method. Thus, the three transport pathways responded differently to changes in cell volume, and, furthermore, responses were different depending on the method of changing cell water content.  相似文献   
14.
15.
16.
Data obtainedduring the last two decades show that spontaneously hypertensive rats,an acceptable experimental model of primary human hypertension, possessincreased activity of both ubiquitous and renal cell-specific isoformsof theNa+/H+exchanger (NHE) andNa+-K+-2Clcotransporter. Abnormalities of these ion transporters have been foundin patients suffering from essential hypertension. Recent geneticstudies demonstrate that genes encoding the - and -subunits ofENaC, a renal cell-specific isoform of theNa+-K+-2Clcotransporter, and 3-, 1-, and 2-subunits of theNa+-K+pump are localized within quantitative trait loci (QTL) for elevated blood pressure as well as for enhanced heart-to-body weight ratio, proteinuria, phosphate excretion, and stroke latency. On the basis ofthe homology of genome maps, several other genes encoding these transporters, as well as theNa+/H+exchanger andNa+-K+-2Clcotransporter, can be predicted in QTL related to the pathogenesis ofhypertension. However, despite their location within QTL, analysis ofcDNA structure did not reveal any mutation in the coding region of theabove-listed transporters in primary hypertension, with the exceptionof G276L substitution in the1-Na+-K+pump from Dahl salt-sensitive rats and a higher occurrence of T594Mmutation of -ENaC in the black population with essential hypertension. These results suggest that, in contrast to Mendelian forms of hypertension, the altered activity of monovalent ion transporters in primary hypertension is caused by abnormalities ofsystems involved in the regulation of their expression and/or function.Further analysis of QTL in F2hybrids of normotensive and hypertensive rats and in affected siblingpairs will allow mapping of genes causing abnormalities ofthese regulatory pathways.  相似文献   
17.
K-Cl cotransport, theelectroneutral-coupled movement of K and Cl ions, plays an importantrole in regulatory volume decrease. We recently reported that nitrite,a nitric oxide derivative possessing potent vasodilation properties,stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs).We hypothesized that activation of vascular smooth muscle (VSM) K-Clcotransport by vasodilators decreases VSM tension. Here we tested thishypothesis by comparing the effects of commonly used vasodilators,hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, andpentaerythritol, on K-Cl cotransport in LK SRBCs and in primarycultures of rat VSM cells (VSMCs) and of HYZ-induced K-Clcotransport activation on relaxation of isolated porcine coronaryrings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rbinflux in the presence and absence of inhibitors for other K/Rbtransport pathways. All vasodilators activated K-Cl cotransport in LKSRBCs and HYZ in VSMCs, and this activation was inhibited by calyculinand genistein, two inhibitors of K-Cl cotransport. KT-5823, a specificinhibitor of protein kinase G, abolished the sodiumnitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggestinginvolvement of the cGMP pathway in K-Cl cotransport activation.Hydralazine, in a dose-dependent manner, and sodium nitroprussiderelaxed (independently of the endothelium) precontractedarteries when only K-Cl cotransport was operating and other pathwaysfor K/Rb transport, including the Ca-activated K channel, wereinhibited. Our findings suggest that K-Cl cotransport may be involvedin vasodilation.

  相似文献   
18.
19.
20.
Involvement of rabphilin-3A-like (RPH3AL), or Noc2, the potential effector of Ras-associated binding proteins Rab3A and Rab27A in the regulation of exocytotic processes in the endocrine pancreas has been demonstrated in experimental models. Noc2 expression together with other regulatory molecules of the exocytotic machinery in human tissues, however, has not been studied. We evaluated immunohistochemical expression of the key molecules of the exocytotic machinery, Noc2, Rab3A, Rab27A, and RIM2, together with the characteristic islet cell hormones, insulin and glucagon in normal and endocrine tumor tissues of human pancreas. Normal pancreatic islets were stained for all of these proteins and showed strong cytoplasmic localization. A similar pattern of strong cytoplasmic expression of these proteins was observed in the majority of endocrine tumors. By contrast, the exocrine portions of normal appearing pancreas completely lacked Rab27A staining and showed decreased expression of the proteins, Noc2, Rab3A, and RIM2. The staining pattern of Noc2 and Rab27A was similar to the staining pattern of glucagon-producing cells within the islets. The concomitant expression of Noc2 with these molecules suggests that Noc2 may serve as an effector for Rab3A and Rab27A and that it is involved in the regulation of exocytosis of the endocrine pancreas in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号