首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35634篇
  免费   15982篇
  国内免费   3篇
  2023年   41篇
  2022年   167篇
  2021年   621篇
  2020年   2263篇
  2019年   3827篇
  2018年   4032篇
  2017年   4257篇
  2016年   4376篇
  2015年   4529篇
  2014年   4261篇
  2013年   4696篇
  2012年   2677篇
  2011年   2320篇
  2010年   3553篇
  2009年   2221篇
  2008年   1347篇
  2007年   830篇
  2006年   759篇
  2005年   782篇
  2004年   705篇
  2003年   623篇
  2002年   565篇
  2001年   453篇
  2000年   374篇
  1999年   283篇
  1998年   89篇
  1997年   63篇
  1996年   37篇
  1995年   57篇
  1994年   50篇
  1993年   35篇
  1992年   65篇
  1991年   57篇
  1990年   65篇
  1989年   45篇
  1988年   37篇
  1987年   35篇
  1986年   33篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   21篇
  1981年   23篇
  1979年   21篇
  1975年   16篇
  1974年   18篇
  1973年   21篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.

Aims

To evaluate the interaction between selected yeasts and bacteria and associate their metabolic activity with secondary cucumber fermentation.

Methods and Results

Selected yeast and bacteria, isolated from cucumber secondary fermentations, were inoculated as single and mixed cultures in a cucumber juice model system. Our results confirmed that during storage of fermented cucumbers and in the presence of oxygen, spoilage yeasts are able to grow and utilize the lactic and acetic acids present in the medium, which results in increased brine pH and the chemical reduction in the environment. These conditions favour opportunistic bacteria that continue the degradation of lactic acid. Lactobacillus buchneri, Clostridium bifermentans and Enterobacter cloacae were able to produce acetic, butyric and propionic acids, respectively, when inoculated in the experimental medium at pH 4·6. Yeast and bacteria interactions favoured the survival of Cl. bifermentans and E. cloacae at the acidic pH typical of fermented cucumbers (3·2), but only E. cloacae was able to produce a secondary product.

Conclusions

The methodology used in this study confirmed that a complex microbiota is responsible for the changes observed during fermented cucumber secondary fermentation and that certain microbial interactions may be essential for the production of propionic and butyric acids.

Significance and Impact of the Study

Understanding the dynamics of the development of secondary cucumber fermentation aids in the identification of strategies to prevent its occurrence and economic losses for the pickling industry.  相似文献   
953.

Aims

To evaluate mannan oligosaccharide (MOS) and threonine effects on performance, small intestine morphology and Salmonella spp. counts in Salmonella Enteritidis‐challenged birds.

Methods and Results

One‐day‐old chicks (1d) were distributed into five treatments: nonchallenged animals fed basal diet (RB‐0), animals fed basal diet and infected with Salmonella Enteritidis (RB‐I), animals fed high level of threonine and infected (HT‐I), birds fed basal diet with MOS and infected (MOS‐I), birds fed high level of threonine and MOS and infected (HT+MOS‐I). Birds were inoculated at 2d with Salmonella Enteritidis, except RB‐0 birds. Chicks fed higher dietary threonine and MOS showed performance similar to RB‐0 and intestinal morphology recovery at 8 dpi. Salmonella counts and the number of Salmonella‐positive animals were lower in HT+MOS‐I compared with other challenged groups.

Conclusion

Mannan oligosaccharides and threonine act synergistically, resulting in improved intestinal environment and recovery after Salmonella inoculation.

Significance and Impact of the Study

Nutritional approaches may be useful to prevent Salmonella infection in the first week and putative carcass contamination at slaughter. This is the first report on the possible synergistic effect of mannan oligosaccharides and threonine, and further studies should be performed including performance, microbiota evaluation, composition of intestinal mucins and immune assessment.  相似文献   
954.
955.
956.
957.
Delphinidin, gallic acid, betulinic acid, and ursolic acid, which are bio-active ingredients in a variety of fruits, vegetables, and herbs, have potent antioxidant activity and various biological activities. However, it is not clear whether these bio-active ingredients can significantly contribute to the protection of embryonic stem (ES) cells from hypoxia-induced apoptosis. In the present study, hypoxia-induced ES cells apoptosis with time, which were abrogated by pretreatment with all ingredients. Hypoxia-induced ROS generation was blocked by pretreatment with all ingredients in a dose-dependent manner, with the maximum ROS scavenging effect observed for delphinidin. Hypoxia increased phosphorylation of JNK and NF-κB were blocked by pretreatment of delphinidin as well as NAC. Hypoxia decreased phosphorylation of Aktthr308 and ser473; these decreases were reversed by pretreatment with delphinidin or NAC. However, Akt inhibition did not affect NF-κB phosphorylation. Delphinidin attenuated the hypoxia-induced increase in Bax, cleaved caspase-9, cleaved caspase-3, and decrease in Bcl-2, which were diminished by pretreatment of Akt inhibitor. Hypoxia induced Bax translocation from the cytosol to mitochondria. Furthermore, hypoxia induced mitochondria membrane potential loss and cytochrome c release in cytosol, which were blocked by delphinidin pretreatment. Hypoxia induced cleavage of procaspase-9 and procaspase-3 which were blocked by delphinidin or SP600125, but Akt inhibitor abolished the protection effect of delphinidin. Moreover, inhibition of JNK and NF-κB abolished hypoxia-induced ES cell apoptosis and inhibition of Akt attenuated delphinidin-induced blockage of apoptosis. The results indicate that delphinidin can prevent hypoxia-induced apoptosis of ES cells through the inhibition of JNK and NF-κB phosphorylation, and restoration of Akt phosphorylation.  相似文献   
958.

Aims

To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01.

Methods and Results

The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l?1 isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel–nitrilotriacetic acid (Ni2+‐NTA) agarose column and their activities characterized. BSH A hydrolysed tauro‐conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco‐conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety.

Conclusions

BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate‐binding sites, these remain functional through motif conservation.

Significance and Impact of the Study

This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco‐conjugated or tauro‐conjugated bile salts. Future structural homology studies and site‐directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号