排序方式: 共有120条查询结果,搜索用时 15 毫秒
31.
Andrew Lucas Michaela Lucas Anette Strhyn Niamh M. Keane Elizabeth McKinnon Rebecca Pavlos Ellen M. Moran Viola Meyer-Pannwitt Silvana Gaudieri Lloyd D’Orsogna Spyros Kalams David A. Ostrov S?ren Buus Bjoern Peters Simon Mallal Elizabeth Phillips 《PloS one》2015,10(2)
BackgroundFifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population.MethodsTo determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling.ResultsAbacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells.ConclusionsWe propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection. 相似文献
32.
33.
Kennedy AR Pissios P Otu H Roberson R Xue B Asakura K Furukawa N Marino FE Liu FF Kahn BB Libermann TA Maratos-Flier E 《American journal of physiology. Endocrinology and metabolism》2007,292(6):E1724-E1739
Ketogenic diets have been used as an approach to weight loss on the basis of the theoretical advantage of a low-carbohydrate, high-fat diet. To evaluate the physiological and metabolic effects of such diets on weight we studied mice consuming a very-low-carbohydrate, ketogenic diet (KD). This diet had profound effects on energy balance and gene expression. C57BL/6 mice animals were fed one of four diets: KD; a commonly used obesogenic high-fat, high-sucrose diet (HF); 66% caloric restriction (CR); and control chow (C). Mice on KD ate the same calories as mice on C and HF, but weight dropped and stabilized at 85% initial weight, similar to CR. This was consistent with increased energy expenditure seen in animals fed KD vs. those on C and CR. Microarray analysis of liver showed a unique pattern of gene expression in KD, with increased expression of genes in fatty acid oxidation pathways and reduction in lipid synthesis pathways. Animals made obese on HF and transitioned to KD lost all excess body weight, improved glucose tolerance, and increased energy expenditure. Analysis of key genes showed similar changes as those seen in lean animals placed directly on KD. Additionally, AMP kinase activity was increased, with a corresponding decrease in ACC activity. These data indicate that KD induces a unique metabolic state congruous with weight loss. 相似文献
34.
Background
Identification of molecular markers for the classification of microarray data is a challenging task. Despite the evident dissimilarity in various characteristics of biological samples belonging to the same category, most of the marker – selection and classification methods do not consider this variability. In general, feature selection methods aim at identifying a common set of genes whose combined expression profiles can accurately predict the category ofallsamples. Here, we argue that this simplified approach is often unable to capture the complexity of a disease phenotype and we propose an alternative method that takes into account the individuality of each patient-sample. 相似文献35.
36.
Generation of ligand-receptor alliances by "SEA" module-mediated cleavage of membrane-associated mucin proteins 下载免费PDF全文
Wreschner DH McGuckin MA Williams SJ Baruch A Yoeli M Ziv R Okun L Zaretsky J Smorodinsky N Keydar I Neophytou P Stacey M Lin HH Gordon S 《Protein science : a publication of the Protein Society》2002,11(3):698-706
A mechanism is described whereby one and the same gene can encode both a receptor protein as well as its specific ligand. Generation of this receptor-ligand partnership is effected by proteolytic cleavage within a specific module located in a membrane resident protein. It is postulated here that the "SEA" module, found in a number of heavily O-linked glycosylated membrane-associated proteins, serves as a site for proteolytic cleavage. The subunits generated by proteolytic cleavage of the SEA module reassociate, and can subsequently elicit a signaling cascade. We hypothesize that all membrane resident proteins containing such a "SEA" module will undergo cleavage, thereby generating a receptor-ligand alliance. This requires that the protein subunits resulting from the proteolytic cleavage reassociate with each other in a highly specific fashion. The same SEA module that serves as the site for proteolytic cleavage, probably also contains the binding sites for reassociation of the resultant two subunits. More than one type of module can function as a site for proteolytic cleavage; this can occur not only in one-pass membrane proteins but also in 7-transmembrane proteins and other membrane-associated proteins. The proposal presented here is likely to have significant practical consequences. It could well lead to the rational design and identification of molecules that, by binding to one of the cleaved partners, will act either as agonists or antagonists, alter signal transduction and, hence, cellular behavior. 相似文献
37.
Benoit Morel Pierre Barbera Lucas Czech Ben Bettisworth Lukas Hübner Sarah Lutteropp Dora Serdari Evangelia-Georgia Kostaki Ioannis Mamais Alexey M Kozlov Pavlos Pavlidis Dimitrios Paraskevis Alexandros Stamatakis 《Molecular biology and evolution》2021,38(5):1777
Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution. 相似文献
38.
Twelve salts were tested for their ability to coagulate microalgae cells in cultures of Chlorella minutissima. The final aim was to develop an easy and efficient approach for harvesting microalgae biomass in dense cultures. Aluminum,
ferric, and zinc salts coagulated C. minutissima cultures, while optimum concentration was 0.75 and 0.5 g L−1 for sulfate and chloride salts, respectively. Aluminum salts were most efficient, but caused some cell lysis, which may render
this approach inappropriate in some cases. Ferric and zinc salts were ranked second and third, respectively, according to
their culture cell-coagulation efficiency. Ferric salts caused a change in the color of the cells, mainly at concentrations
higher than 1 g L−1. Zinc salts were less harmful for the microalgal cells, but an additional problem was observed with cell aggregates adhering
to the walls of the glass test tubes. Selection of the appropriate coagulant is related to the purpose of the coagulation
process. 相似文献
39.
Loredana Prestinicola Clara Boglione Pavlos Makridis Attilio Spanò Valentina Rimatori Elisa Palamara Michele Scardi Stefano Cataudella 《PloS one》2013,8(2)
In this paper, 981 reared juveniles of gilthead seabream (Sparus aurata) were analysed, 721 of which were from a commercial hatchery located in Northern Italy (Venice, Italy) and 260 from the Hellenic Center for Marine Research (Crete, Greece). These individuals were from 4 different egg batches, for a total of 10 different lots. Each egg batch was split into two lots after hatching, and reared with two different methodologies: intensive and semi-intensive. All fish were subjected to processing for skeletal anomaly and meristic count analysis. The aims involved: (1) quantitatively and qualitatively analyzing whether differences in skeletal elements arise between siblings and, if so, what they are; (2) investigating if any skeletal bone tissue/ossification is specifically affected by changing environmental rearing conditions; and (3) contributing to the identification of the best practices for gilthead seabream larval rearing in order to lower the deformity rates, without selections. The results obtained in this study highlighted that: i) in all the semi-intensive lots, the bones having intramembranous ossification showed a consistently lower incidence of anomalies; ii) the same clear pattern was not observed in the skeletal elements whose ossification process requires a cartilaginous precursor. It is thus possible to ameliorate the morphological quality (by reducing the incidence of severe skeletal anomalies and the variability in meristic counts of dermal bones) of reared seabream juveniles by lowering the stocking densities (maximum 16 larvae/L) and increasing the volume of the hatchery rearing tanks (minimum 40 m3). Feeding larvae with a wide variety of live (wild) preys seems further to improve juvenile skeletal quality. Additionally, analysis of the morphological quality of juveniles reared under two different semi-intensive conditions, Mesocosm and Large Volumes, highlighted a somewhat greater capacity of Large Volumes to significantly augment the gap with siblings reared in intensive (conventional) modality. 相似文献