首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1254篇
  免费   110篇
  1364篇
  2024年   2篇
  2023年   3篇
  2022年   15篇
  2021年   28篇
  2020年   18篇
  2019年   15篇
  2018年   17篇
  2017年   25篇
  2016年   52篇
  2015年   61篇
  2014年   85篇
  2013年   81篇
  2012年   102篇
  2011年   123篇
  2010年   74篇
  2009年   64篇
  2008年   89篇
  2007年   95篇
  2006年   76篇
  2005年   57篇
  2004年   55篇
  2003年   63篇
  2002年   62篇
  2001年   7篇
  2000年   4篇
  1999年   12篇
  1998年   15篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   1篇
  1993年   8篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有1364条查询结果,搜索用时 15 毫秒
91.
The structure-activity relationship of a novel series of 8-biarylquinolines acting as type 4 phosphodiesterase (PDE4) inhibitors is described herein. Prototypical compounds from this series are potent and non-selective inhibitors of the four distinct PDE4 (IC(50)<10 nM) isozymes (A-D). In a human whole blood in vitro assay, they inhibit (IC(50)<0.5 microM) the LPS-induced release of the cytokine TNF-alpha. Optimized inhibitors were evaluated in vivo for efficacy in an ovalbumin-induced bronchoconstriction model in conscious guinea pigs. Their propensity to produce an emetic response was evaluated by performing pharmacokinetic studies in squirrel monkeys. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of efficacy over emesis.  相似文献   
92.
Abstract: The peptides of the transforming growth factor-β (TGF-β) family transduce their signal through ligand-induced heteromeric complexes that consist of type I and type II serine/threonine kinases. Both TGF-β receptors are abundant in many peripheral tissues, but clear evidence of their expression in cortical astrocytes and neurons has not been published so far. In this study, we investigated the expression of type I and type II TGF-β receptors and their potential ligands (TGF-β1, TGF-β2, and TGF-β3) in the CNS by using RT-PCR and immunohistochemistry. Moreover, to further the study of those cell types that exhibit TGF-β isoforms and related receptors, we examined through the use of RT-PCR whether cortical neurons and astrocytes in culture express the mRNAs for TGF-βs and their receptors. We show that the three TGF-β isoform mRNAs are present in the CNS. However, although astrocytes in culture display all three isoforms, neurons in culture express only TGF-β2. We have demonstrated that both type I and type II TGF-β receptor mRNAs and proteins are present in the CNS and in cultures of cortical neurons and astrocytes. Thus, TGF-βs may act as autocrine and paracrine signals in the CNS between both neurons and astrocytes via the same receptor systems as those found in peripheral tissues. TGF-β1 has been shown to be induced following hypoxic-ischemic brain injury and may play a critical role in the pathophysiology of degenerative processes in the CNS. In the present investigation, we confirmed that the expression of TGF-β1 was increased markedly up until 24 h and thereafter was stable over the first 3 days following permanent occlusion of the middle cerebral artery in mice. However, whereas the expression of the type I TGF-β receptor was not altered by the ischemic insult, the pattern of the type II TGF-β receptors was modified dramatically in the ischemic area 3 days after the occlusion. These data show that, even if ligands are present, they may not be able to transduce their signal. Finally, the present study clearly demonstrates that a knowledge of the expression of ligand-specific receptors following brain injury is a fundamental step in clarifying the involvement of cytokines in neurodegenerative diseases.  相似文献   
93.
Gangliosides are ubiquitous membrane-associated glycosphingolipids, which are involved in cell growth and differentiation. Most tumor cells synthesize and shed large amounts of gangliosides into their microenvironment, and many studies have unraveled their immunosuppressive properties. In the present study we analyzed the effects of GM3 and GD3 gangliosides, purified from human melanoma tumors, on the differentiation of monocyte-derived dendritic cells (MoDC). At concentrations close to those detected in the sera from melanoma patients, both gangliosides dose-dependently inhibit the phenotypic and functional differentiation of MoDC, as assessed by a strong down-regulation of CD1a, CD54, CD80, and CD40 Ags and impaired allostimulatory function on day 6 of culture. Furthermore, GM3 and GD3 gangliosides decreased the viable cell yield and induced significant DC apoptosis. Finally, addition of GD3 to differentiating DC impaired their subsequent maturation induced by CD154. The resulting DC produced low amounts of IL-12 and large amounts of IL-10, a cytokine pattern that might hamper an efficient antitumor immune response. In conclusion, the results demonstrate that gangliosides impair the phenotypic and functional differentiation of MoDC and induce their apoptosis, which may be an additional mechanism of human melanoma escape.  相似文献   
94.
95.
96.
We have identified a novel evolutionarily conserved protein motif - designated the THAP domain - that defines a new family of cellular factors. We have found that the THAP domain presents striking similarities with the site-specific DNA-binding domain (DBD) of Drosophila P element transposase, including a similar size, N-terminal location, and conservation of the residues that define the THAP motif, such as the C2CH signature (Cys-Xaa(2-4)-Cys-Xaa(35-50)-Cys-Xaa(2)-His). Our results suggest that the THAP domain is a novel example of a DBD that is shared between cellular proteins and transposases from mobile genomic parasites.  相似文献   
97.
Hardy OJ  Charbonnel N  Fréville H  Heuertz M 《Genetics》2003,163(4):1467-1482
The mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in allele sizes, features that may introduce bias when using classical measures of population differentiation based on allele identity (e.g., F(ST), Nei's Ds genetic distance). Allele size-based measures of differentiation, assuming a stepwise mutation process [e.g., Slatkin's R(ST), Goldstein et al.'s (deltamu)(2)], may better reflect differentiation at microsatellite loci, but they suffer high sampling variance. The relative efficiency of allele size- vs. allele identity-based statistics depends on the relative contributions of mutations vs. drift to population differentiation. We present a simple test based on a randomization procedure of allele sizes to determine whether stepwise-like mutations contributed to genetic differentiation. This test can be applied to any microsatellite data set designed to assess population differentiation and can be interpreted as testing whether F(ST) = R(ST). Computer simulations show that the test efficiently identifies which of F(ST) or R(ST) estimates has the lowest mean square error. A significant test, implying that R(ST) performs better than F(ST), is obtained when the mutation rate, mu, for a stepwise mutation process is (a) >/= m in an island model (m being the migration rate among populations) or (b) >/= 1/t in the case of isolated populations (t being the number of generations since population divergence). The test also informs on the efficiency of other statistics used in phylogenetical reconstruction [e.g., Ds and (deltamu)(2)], a nonsignificant test meaning that allele identity-based statistics perform better than allele size-based ones. This test can also provide insights into the evolutionary history of populations, revealing, for example, phylogeographic patterns, as illustrated by applying it on three published data sets.  相似文献   
98.
Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.  相似文献   
99.
The expansion of the biologics pipeline depends on the identification of candidate proteins for clinical trials. Speed is one of the critical issues, and the rapid production of high quality, research-grade material for preclinical studies by transient gene expression (TGE) is addressing this factor in an impressive way: following DNA transfection, the production phase for TGE is usually 2-10 days. Recombinant proteins (r-proteins) produced by TGE can therefore enter the drug development and screening process in a very short time--weeks. With "classical" approaches to protein expression from mammalian cells, it takes months to establish a productive host cell line. This article summarizes efforts in industry and academia to use TGE to produce tens to hundreds of milligrams of r-proteins for either fundamental research or preclinical studies.  相似文献   
100.
The evolutionary stability of haploid–diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long‐standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year‐round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid–diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号