首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1424篇
  免费   127篇
  2024年   2篇
  2023年   3篇
  2022年   15篇
  2021年   28篇
  2020年   20篇
  2019年   17篇
  2018年   18篇
  2017年   25篇
  2016年   55篇
  2015年   64篇
  2014年   90篇
  2013年   90篇
  2012年   110篇
  2011年   133篇
  2010年   79篇
  2009年   67篇
  2008年   95篇
  2007年   103篇
  2006年   81篇
  2005年   65篇
  2004年   64篇
  2003年   77篇
  2002年   73篇
  2001年   10篇
  2000年   9篇
  1999年   20篇
  1998年   21篇
  1997年   10篇
  1996年   13篇
  1995年   5篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1976年   5篇
  1975年   2篇
  1971年   3篇
  1969年   1篇
排序方式: 共有1551条查询结果,搜索用时 15 毫秒
991.
Species delimitation and identification can be arduous for taxa whose morphologic characters are easily confused, which can hamper global biodiversity assessments and pest species management. Exploratory methods of species delimitation that use DNA sequence as their primary information source to establish group membership and estimate putative species boundaries are useful approaches, complementary to traditional taxonomy. Termites of the genus Nasutitermes make interesting models for the application of such methods. They are dominant in Neotropical primary forests but also represent major agricultural and structural pests. Despite the prevalence, pivotal ecological role and economical impact of this group, the taxonomy of Nasutitermes species mainly depends on unreliable characters of soldier external morphology. Here, we generated robust species hypotheses for 79 Nasutitermes colonies sampled throughout French Guiana without any a priori knowledge of species affiliation. Sequence analysis of the mitochondrial cytochrome oxidase II gene was coupled with exploratory species‐delimitation tools, using the automatic barcode gap discovery method (ABGD) and a generalized mixed Yule‐coalescent model (GMYC) to propose primary species hypotheses (PSHs). PSHs were revaluated using phylogenetic analyses of two more loci (mitochondrial 16S rDNA and nuclear internal transcribed spacer 2) leading to 16 retained secondary species hypotheses (RSSH). Seven RSSHs, represented by 44/79 of the sampled colonies, were morphologically affiliated to species recognized as pests in the Neotropics, where they represent a real invasive pest potential in the context of growing ecosystem anthropization. Multigenic phylogenies based on combined alignments (1426–1784 bp) were also reconstructed to identify ancestral ecological niches and major‐pest lineages, revealing that Guyanese pest species do not form monophyletic groups.  相似文献   
992.
This paper describes a method to study the diversity of young kelp sporophytes that are recruited from the bank of microscopic stages. Small samples of rocky substratum (0.5 cm2) were collected from the low intertidal zone, which was dominated by the kelp Laminaria digitata. Samples were cultivated in the laboratory under conditions permitting gametogenesis. Sporophyte recruits in the cultures were isolated and identified at the species level using the barcoding mitochondrial marker rpl31–rns. Sixty per cent of the collected samples had at least one to a maximum of 30 kelp recruits, belonging to five different species (L. digitata, L. hyperborea, L. ochroleuca, Saccharina latissima and Sacchorhiza polyschides). As the examination of freshly collected rocky samples under a stereo microscope did not reveal any kelp sporophytes, the recruitment in these samples after culture probably occurred from the bank of microscopic forms present on the substratum. Despite the dominance of L. digitata in the field, the young sporophytes obtained after culturing were mainly S. polyschides. This study illustrates the suitability of culturing in combination with molecular identification of young sporophytes to address several key aspects of kelp ecology related to the existence of a bank of microscopic stages in the field.  相似文献   
993.
994.
Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.  相似文献   
995.
We recently reported that pancreatic islets from pre-diabetic rats undergo an inflammatory process in which IL-1β takes part and controls β-cell function. In the present study, using the INS-1 rat pancreatic β-cell line, we investigated the potential involvement of membrane-associated cholesterol-enriched lipid rafts in IL-1β signaling and biological effects on insulin secretion, β-cell proliferation and apoptosis. We show that, INS-1 cells exposure to increasing concentrations of IL-1β leads to a progressive inhibition of insulin release, an increase in the number of apoptotic cells and a dose-dependent decrease in pancreatic β-cell proliferation. Disruption of membrane lipid rafts markedly reduced glucose-stimulated insulin secretion but did not affect either cell apoptosis or proliferation rate, demonstrating that membrane lipid raft integrity is essential for β-cell secretory function. In the same conditions, IL-1β treatment of INS-1 cells led to a slight further decrease in insulin secretion for low concentrations of the cytokine, and a more marked one, similar to that observed in normal cells for higher concentrations. These effects occurred together with an increase in iNOS expression and surprisingly with an upregulation of tryptophane hydroxylase and protein Kinase C in membrane lipid rafts suggesting that compensatory mechanisms develop to counteract IL-1β inhibitory effects. We also demonstrate that disruption of membrane lipid rafts did not prevent cytokine-induced cell death recorded after exposure to high IL-1β concentrations. Finally, concerning cell proliferation, we bring strong evidence that membrane lipid rafts exert a protective effect against IL-1β anti-proliferative effect, possibly mediated at least partly by modifications in ERK and PKB expression/activities. Our results 1) demonstrate that IL-1β deleterious effects do not require a cholesterol-dependent plasma membrane compartmentalization of IL-1R1 signaling and 2) confer to membrane lipid rafts integrity a possible protective function that deserves to be considered in the context of inflammation and especially T2D pathogenesis.  相似文献   
996.

Background

Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production.

Methods

Immortalized normal human astrocytes engineered to express heterozygous mutant IDH1 or wild-type IDH1 were investigated. Flux of pyruvate via PC and via pyruvate dehydrogenase (PDH) was determined by using magnetic resonance spectroscopy to probe the labeling of [2-13C]glucose-derived 13C-labeled glutamate and glutamine. Activity assays, RT-PCR and western blotting were used to probe the expression and activity of relevant enzymes. The Cancer Genome Atlas (TCGA) data was analyzed to assess the expression of enzymes in human glioma samples.

Results

Compared to wild-type cells, mutant IDH1 cells significantly increased fractional flux through PC. This was associated with a significant increase in PC activity and expression. Concurrently, PDH activity significantly decreased, likely mediated by significantly increased inhibitory PDH phosphorylation by PDH kinase 3. Consistent with the observation in cells, analysis of TCGA data indicated a significant increase in PC expression in mutant IDH-expressing human glioma samples compared to wild-type IDH.

Conclusions

Our findings suggest that changes in PC and PDH may be an important part of cellular adaptation to the IDH1 mutation and may serve as potential therapeutic targets.  相似文献   
997.
Adaptation to marginal habitats at species range-limits has often been associated with parthenogenetic reproduction in terrestrial animals and plants. Laboratory observations have shown that brown algae exhibit a high propensity for parthenogenesis by various mechanisms. The kelp Laminaria digitata is an important component of the ecosystem in Northern European rocky intertidal habitats. We studied four L. digitata populations for the effects of marginality on genetic diversity and sexual reproduction. Two populations were marginal: One (Locquirec, in Northern Brittany) was well within the geographic range, but was genetically isolated from other populations by large stretches of sandy beaches. Another population was at the range limits of the species (Quiberon, in Southern Brittany) and was exposed to much higher seasonal temperature changes. Microsatellite analyses confirmed that these populations showed decreased genetic and allelic diversity, consistent with marginality and genetic isolation. Sporophytes from both marginal populations showed greatly diminished spore-production compared to central populations, but only the southern-limit population (Quiberon) showed a high propensity for producing unreduced (2N) spores. Unreduced 2N spores formed phenotypically normal gametophytes with nuclear area consistent with ≥2N DNA contents, and microsatellite studies suggested these were produced at least in part by automixis. However, despite this being the dominant path of spore production in Quiberon sporophyte individuals, the genetic evidence indicated the population was maintained mostly by sexual reproduction. Thus, although spore production and development showed the expected tendency of geographical parthenogenesis in marginal populations, this appeared to be a consequence of maladaptation, rather than an adaptation to, life in a marginal habitat.  相似文献   
998.
999.
Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR) are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (F v/F m), was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.  相似文献   
1000.
Visceral leishmaniasis (VL) is a parasitic infectious disease that causes significant morbidity and mortality in the tropical and subtropical regions of the world. Although infections with visceralizing Leishmania may be asymptomatic, factors such as undernutrition increase the likelihood of progressing to clinical disease. Protein malnutrition, the most deleterious cause of malnutrition in developing countries, has been considered as a primary risk factor for the development of clinical VL. However, data regarding the immunological basis of this association are scarce. With the aim to analyze the effects of protein malnutrition on Leishmania infantum infection, we used BALB/c mice subjected to control or low protein isocaloric diets. Each animal group was divided into two subgroups and one was infected with L. infantum resulting in four study groups: animals fed 14% protein diet (CP), animals fed 4% protein diet (LP), animals fed 14% protein diet and infected (CPi), and animals fed 4% protein diet and infected (LPi).The susceptibility to L. infantum infection and immune responses were assessed in terms of body and lymphoid organ weight, parasite load, lymphocyte subpopulations, and cytokine expression. LPi mice had a significant reduction of body and lymphoid organ weight and exhibited a severe decrease of lymphoid follicles in the spleen. Moreover, LPi animals showed a significant decrease in CD4+CD8+ T cells in the thymus, whereas there was an increase of CD4+ and CD8+ T cells percentages in the spleen. Notably, the cytokine mRNA levels in the thymus and spleen of protein malnourished-infected animals were altered compared to the CP mice. Protein malnutrition results in a drastic dysregulation of T cells and cytokine expression in the thymus and spleen of L. infantum-infected BALB/c mice, which may lead to defective regulation of the thymocyte population and an impaired splenic immune response, accelerating the events of a normal course of infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号