首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1264篇
  免费   111篇
  1375篇
  2024年   2篇
  2023年   4篇
  2022年   15篇
  2021年   28篇
  2020年   18篇
  2019年   18篇
  2018年   17篇
  2017年   25篇
  2016年   52篇
  2015年   61篇
  2014年   85篇
  2013年   81篇
  2012年   102篇
  2011年   123篇
  2010年   74篇
  2009年   66篇
  2008年   90篇
  2007年   96篇
  2006年   77篇
  2005年   57篇
  2004年   55篇
  2003年   63篇
  2002年   62篇
  2001年   7篇
  2000年   4篇
  1999年   12篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1993年   7篇
  1992年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有1375条查询结果,搜索用时 0 毫秒
51.
52.
53.
A transcriptional network in polycystic kidney disease   总被引:11,自引:0,他引:11  
  相似文献   
54.
Wolbachia are endosymbiotic bacteria that may alter the reproductive mechanisms of arthropod hosts. Eusocial termites provide considerable scope for Wolbachia studies owing to their ancient origin, their great diversity and their considerable ecological, biological and behavioral plasticity. This article describes the phylogenetic distribution of Wolbachia infecting termites of the Cubitermes genus, which are particularly abundant soil-feeders in equatorial Africa. Fourteen colonies of the Cubitermes sp. affinis subarquatus complex of species were screened using five bacterial genes (wsp, ftsZ, coxA, fbpA and 16S rRNA genes) and a striking diversity of Wolbachia strains was identified within these closely related species. In the host complex, three Wolbachia variants were found that were not in the super groups usually reported for termites (F and H), each infecting one or two Cubitermes species.  相似文献   
55.
We wish to understand how organ-specific structures assemble during embryonic development. In the present paper, we consider what determines the subapical position of the terminal web in the intestinal cells of the nematode Caenorhabditis elegans. The terminal web refers to the organelle-depleted, intermediate filament-rich layer of cytoplasm that underlies the apical microvilli of polarized epithelial cells. It is generally regarded as the anchor for actin rootlets protruding from the microvillar cores. We demonstrate that: (i) the widely used monoclonal antibody MH33 reacts (only) with the gut-specific intermediate filament protein encoded by the ifb-2 gene; (ii) IFB-2 protein accumulates near the gut lumen beginning at the lima bean stage of embryogenesis and remains associated with the gut lumen into adulthood; and (iii) as revealed by immunoelectron microscopy, IFB-2 protein is confined to a discrete circumferential subapical layer within the intestinal terminal web (known in nematodes as the "endotube"); this layer joins directly to the apical junction complexes that connect adjacent gut cells. To investigate what determines the disposition of the IFB-2-containing structure as the terminal web assembles during development, RNAi was used to remove the functions of gene products previously shown to be involved in the overall apicobasal polarity of the developing gut cell. Removal of dlg-1, ajm-1, or hmp-1 function has little effect on the overall position or continuity of the terminal web IFB-2-containing layer. In contrast, removal of the function of the let-413 gene leads to a basolateral expansion of the terminal web, to the point where it can now extend around the entire circumference of the gut cell. The same treatment also leads to concordant basolateral expansion of both gut cell cortical actin and the actin-associated protein ERM-1. LET-413 has previously been shown to be basolaterally located and to prevent the basolateral expansion of several individual apical proteins. In the present context, we conclude that LET-413 is also necessary to maintain the entire terminal web or brush border assembly at the apical surface of C. elegans gut cells, a dramatic example of the so-called "fence" function ascribed to epithelial cell junctions. On the other hand, LET-413 is not necessary to establish this apical location during early development. Finally, the distance at which the terminal web intermediate filament layer lies beneath the gut cell surface (both apical and basolateral) must be determined independently of apical junction position.  相似文献   
56.
Apoptotic cell death often requires caspases. Caspases are part of a family of related molecules including also paracaspases and metacaspases. Are molecules of this family generally involved in cell death? More specifically, do non-apoptotic caspase-independent types of cell death require paracaspases or metacaspases? Dictyostelium discoideum lends itself well to answering these questions because 1) it undergoes non-apoptotic developmental cell death of a vacuolar autophagic type and 2) it bears neither caspase nor metacaspase genes and apparently only one paracaspase gene. This only paracaspase gene can be inactivated by homologous recombination. Paracaspase-null clones were thus obtained in each of four distinct Dictyostelium strains. These clones were tested in two systems, developmental stalk cell death in vivo and vacuolar autophagic cell death in a monolayer system mimicking developmental cell death. Compared with parent cells, all of the paracaspase-null cells showed unaltered cell death in both test systems. In addition, paracaspase inactivation led to no alteration in development or interaction with a range of bacteria. Thus, in Dictyostelium, vacuolar programmed cell death in development and in a monolayer model in vitro would seem not to require paracaspase. To our knowledge, this is the first instance of developmental programmed cell death shown to be independent of any caspase, paracaspase or metacaspase. These results have implications as to the relationship in evolution between cell death and the caspase family.  相似文献   
57.
Solid‐phase microextraction (SPME) is widely used in analytical laboratories for the analysis of organic compounds, thanks to its simplicity and versatility. In the present work, the synthesis and evaluation of imprinted films for SPME by electropolymerisation of pyrrole alone or in the presence of ethylene glycol dimethacrylate is proposed. Sulfadimethoxine (SDM), a sulfonamide antibiotic, was used as template molecule. Initially, a molecularly imprinted polymer film was prepared by electropolymerisation of pyrrole onto a platinum foil, using SDM as template. The SDM template was removed by overoxidation. The behaviour of SDM on imprinted and non‐imprinted polymers was investigated by differential pulse voltammetry, and a clear imprinting effect was observed, which was confirmed by rebinding experiments using both conventional and electrochemically enhanced‐SPME. However, in general, the extraction efficiency was rather low (<6%) and unspecific interactions are too high. Attempts to increase extraction efficiency were unsuccessful, but the incorporation of ethylene glycol dimethacrylate to the films reduced unspecific interactions to a certain extent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
58.
59.
60.
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号