首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1253篇
  免费   110篇
  1363篇
  2024年   2篇
  2023年   3篇
  2022年   15篇
  2021年   28篇
  2020年   18篇
  2019年   15篇
  2018年   17篇
  2017年   25篇
  2016年   52篇
  2015年   61篇
  2014年   85篇
  2013年   81篇
  2012年   102篇
  2011年   123篇
  2010年   74篇
  2009年   64篇
  2008年   89篇
  2007年   96篇
  2006年   76篇
  2005年   57篇
  2004年   55篇
  2003年   64篇
  2002年   63篇
  2001年   8篇
  2000年   4篇
  1999年   12篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1994年   1篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有1363条查询结果,搜索用时 0 毫秒
81.
82.
Risk mapping in epidemiology enables areas with a low or high risk of disease contamination to be localized and provides a measure of risk differences between these regions. Risk mapping models for pooled data currently used by epidemiologists focus on the estimated risk for each geographical unit. They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden Markov random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Risk classification, which is necessary to draw clearly delimited risk zones (in which protection measures may be applied), generally must be performed separately. We propose a method for direct classified risk mapping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidden field (HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attached to the classes are parameters and are estimated. When mapping risk using HMRFs, the conditional distribution of the observed field is modeled with a Poisson rather than a Gaussian distribution as in image segmentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidden model should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts model) do not impose this. We therefore propose new potential functions for the HF that take into account class ordering. We use a Monte Carlo version of the expectation-maximization algorithm to estimate parameters and determine risk classes. We illustrate the method's behavior on simulated and real data sets. Our method appears particularly well adapted to localize high-risk regions and estimate the corresponding risk levels.  相似文献   
83.
84.
Myriaporones are naturally occurring compounds which structurally resemble the southern hemisphere of the tedanolide family of macrolide antitumor agents. Despite the fact that myriaporone 3/4 represents only a portion of tedanolide, it nonetheless retains much of its biological activity. We show here that like tedanolide, myriaporone 3/4 inhibits protein synthesis and proliferation of mammalian cells with low nanomolar potencies but displays no prokaryotic growth inhibitory effect. Moreover, myriaporone 3/4 displays a very rapid, reversible and p21-independent activity to block S phase progression in mammalian cells. Structure-activity relationship studies revealed that the C18-C19 epoxide and the C14 hydroxymethyl group (tedanolide numbering) of myriaporone 3/4 are required for cell cycle inhibition. These constitute previously unidentified and/or novel pharmacophores for myriaporone 3/4. Our results show that the important biological activities associated with the structurally complex tedanolides are present and can be harnessed in the chemically much simpler myriaporones. This greatly increases the value of the latter as investigative tools for biochemical research as well as for development of potential therapeutics.  相似文献   
85.
Transmissible spongiform encephalopathies, also called prion diseases, are characterized by neuronal loss linked to the accumulation of PrP(Sc), a pathologic variant of the cellular prion protein (PrP(C)). Although the molecular and cellular bases of PrP(Sc)-induced neuropathogenesis are not yet fully understood, increasing evidence supports the view that PrP(Sc) accumulation interferes with PrP(C) normal function(s) in neurons. In the present work, we exploit the properties of PrP-(106-126), a synthetic peptide encompassing residues 106-126 of PrP, to investigate into the mechanisms sustaining prion-associated neuronal damage. This peptide shares many physicochemical properties with PrP(Sc) and is neurotoxic in vitro and in vivo. We examined the impact of PrP-(106-126) exposure on 1C11 neuroepithelial cells, their neuronal progenies, and GT1-7 hypothalamic cells. This peptide triggers reactive oxygen species overflow, mitogen-activated protein kinase (ERK1/2), and SAPK (p38 and JNK1/2) sustained activation, and apoptotic signals in 1C11-derived serotonergic and noradrenergic neuronal cells, while having no effect on 1C11 precursor and GT1-7 cells. The neurotoxic action of PrP-(106-126) relies on cell surface expression of PrP(C), recruitment of a PrP(C)-Caveolin-Fyn signaling platform, and overstimulation of NADPH-oxidase activity. Altogether, these findings provide actual evidence that PrP-(106-126)-induced neuronal injury is caused by an amplification of PrP(C)-associated signaling responses, which notably promotes oxidative stress conditions. Distorsion of PrP(C) signaling in neuronal cells could hence represent a causal event in transmissible spongiform encephalopathy pathogenesis.  相似文献   
86.
We searched for linkage disequilibrium (LD) in 137 triads with dyslexia, using markers that span the most-replicated dyslexia susceptibility region on 6p21-p22, and found association between the disease and markers within the VMP/DCDC2/KAAG1 locus. Detailed refinement of the LD region, involving sequencing and genotyping of additional markers, showed significant association within DCDC2 in single-marker and haplotype analyses. The association appeared to be strongest in severely affected patients. In a second step, the study was extended to include an independent sample of 239 triads with dyslexia, in which the association--in particular, with the severe phenotype of dyslexia--was confirmed. Our expression data showed that DCDC2, which contains a doublecortin homology domain that is possibly involved in cortical neuron migration, is expressed in the fetal and adult CNS, which--together with the hypothesized protein function--is in accordance with findings in dyslexic patients with abnormal neuronal migration and maturation.  相似文献   
87.
In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations.  相似文献   
88.
In the adult cricket brain, a cluster of neuroblasts produces new interneurons that integrate into the mushroom body (MB), the main associative structure for multisensory information of the insect brain. In previous study we showed the antagonist role of the two morphogenetic hormones, juvenile hormone (JH) and ecdysone, on the regulation of adult MB neurogenesis in vivo. In order to examine whether these hormones act directly on neural progenitor cells, we developed an organotypic culture of MB cortices. Cell proliferation was assessed by 5-bromo, 2'-deoxyuridine (BrdU) incorporation. We showed that JH increased mushroom body neuroblast (MBNb) proliferation, confirming the mitogenic effect of JH observed in vivo. By contrast, ecdysone did not affect the amount of BrdU-labeled nuclei, suggesting that the inhibitory effect observed in vivo probably proceeded from an indirect pathway. We then examined the role of growth factors known to stimulate neural stem cell/progenitor cell proliferation in vertebrates. As shown by calcium imaging, MBNb only expressed functional receptors for insulin whereas mature interneurons responded to IGF-I and bFGF. Both insulin (10 microg/ml) and IGF-I (10 ng/ml) enhanced MB progenitor cell proliferation in culture, although the insulin effect was more pronounced. This effect was abolished when an inhibitor of polyamine biosynthesis was present in the medium, suggesting a link between polyamines and the insulin signaling pathway. By contrast, bFGF (20-200 ng/ml) failed to stimulate MBNb proliferation. Our results point to conserved and divergent mechanisms between vertebrates and invertebrates in the regulation of adult neural progenitor cell proliferation.  相似文献   
89.
90.

Background

Aldosterone producing lesions are a common cause of hypertension, but genetic alterations for tumorigenesis have been unclear. Recently, either of two recurrent somatic missense mutations (G151R or L168R) was found in the potassium channel KCNJ5 gene in aldosterone producing adenomas. These mutations alter the channel selectivity filter and result in Na+ conductance and cell depolarization, stimulating aldosterone production and cell proliferation. Because a similar mutation occurs in a Mendelian form of primary aldosteronism, these mutations appear to be sufficient for cell proliferation and aldosterone production. The prevalence and spectrum of KCNJ5 mutations in different entities of adrenocortical lesions remain to be defined.

Materials and Methods

The coding region and flanking intronic segments of KCNJ5 were subjected to Sanger DNA sequencing in 351 aldosterone producing lesions, from patients with primary aldosteronism and 130 other adrenocortical lesions. The specimens had been collected from 10 different worldwide referral centers.

Results

G151R or L168R somatic mutations were identified in 47% of aldosterone producing adenomas, each with similar frequency. A previously unreported somatic mutation near the selectivity filter, E145Q, was observed twice. Somatic G151R or L168R mutations were also found in 40% of aldosterone producing adenomas associated with marked hyperplasia, but not in specimens with merely unilateral hyperplasia. Mutations were absent in 130 non-aldosterone secreting lesions. KCNJ5 mutations were overrepresented in aldosterone producing adenomas from female compared to male patients (63 vs. 24%). Males with KCNJ5 mutations were significantly younger than those without (45 vs. 54, respectively; p<0.005) and their APAs with KCNJ5 mutations were larger than those without (27.1 mm vs. 17.1 mm; p<0.005).

Discussion

Either of two somatic KCNJ5 mutations are highly prevalent and specific for aldosterone producing lesions. These findings provide new insight into the pathogenesis of primary aldosteronism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号