首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1343篇
  免费   122篇
  国内免费   1篇
  2024年   2篇
  2023年   3篇
  2022年   17篇
  2021年   29篇
  2020年   19篇
  2019年   16篇
  2018年   19篇
  2017年   26篇
  2016年   54篇
  2015年   63篇
  2014年   89篇
  2013年   83篇
  2012年   112篇
  2011年   126篇
  2010年   79篇
  2009年   67篇
  2008年   96篇
  2007年   104篇
  2006年   78篇
  2005年   60篇
  2004年   61篇
  2003年   65篇
  2002年   63篇
  2001年   9篇
  2000年   5篇
  1999年   14篇
  1998年   16篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1969年   2篇
  1967年   1篇
排序方式: 共有1466条查询结果,搜索用时 15 毫秒
121.
ClpB, a component of stress response in microorganisms, serves as a chaperone, preventing protein aggregation and assisting in the refolding of denatured proteins. A clpB mutant of Porphyromonas gingivalis W83 demonstrated increased sensitivity to heat stress, but not to hydrogen peroxide and extreme pHs. In KB cells, human coronary artery endothelial (HCAE) cells and gingival epithelial cells, the clpB mutant exhibited significantly decreased invasion suggesting that the ClpB protein is involved in cellular invasion. Transmission electron microscopic analysis showed that the clpB mutant was more susceptible to intracellular killing than the wild-type strain in HCAE cells. The global genetic profile of the clpB mutant showed that 136 genes belonging to several different cellular function groups were differentially regulated, suggesting that ClpB is ultimately involved in the expression of multiple P. gingivalis genes. A competition assay in which a mixture of wild-type W83 and the clpB mutant were injected into mice demonstrated that the clpB mutant did not survive as well as the wild type. Additionally, mice treated with the clpB mutant alone survived significantly better than those treated with the wild-type strain. Collectively, these data suggest that ClpB, either directly or indirectly, plays an important role in P. gingivalis virulence.  相似文献   
122.
Cold seeps in the Gulf of Mexico are often dominated by mussels of the genus Bathymodiolus that harbour symbiotic bacteria in their gills. In this study, we analysed symbiont diversity, abundance and metabolic potential in three mussel species from the northern Gulf of Mexico: Bathymodiolus heckerae from the West Florida Escarpment, Bathymodiolus brooksi from Atwater Valley and Alaminos Canyon, and 'Bathymodiolus' childressi, which co-occurs with B. brooksi in Alaminos Canyon. Comparative 16S rRNA sequence analysis confirmed a single methanotroph-related symbiont in 'B.' childressi and a dual symbiosis with a methanotroph- and thiotroph-related symbiont in B. brooksi. A previously unknown diversity of four co-occurring symbionts was discovered in B. heckerae: a methanotroph, two phylogenetically distinct thiotrophs and a methylotroph-related phylotype not previously described from any marine invertebrate symbiosis. A gene characteristic of methane-oxidzing bacteria, pmoA, was identified in all three mussel species confirming the methanotrophic potential of their symbionts. Stable isotope analyses of lipids and whole tissue also confirmed the importance of methanotrophy in the carbon nutrition of all of the mussels. Analyses of absolute and relative symbiont abundance in B. heckerae and B. brooksi using fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization indicated a clear dominance of methanotrophic over thiotrophic symbionts in their gill tissues. A site-dependent variability in total symbiont abundance was observed in B. brooksi, with specimens from Alaminos Canyon harbouring much lower densities than those from Atwater Valley. This shows that symbiont abundance is not species-specific but can vary considerably between populations.  相似文献   
123.
124.
Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage.  相似文献   
125.
126.
Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary‐relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.  相似文献   
127.
The evolutionary stability of haploid–diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long‐standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year‐round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid–diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle.  相似文献   
128.
129.
130.
Heparanase is an endoglycosidase that specifically cleaves heparan sulphate side chains of heparan sulphate proteoglycans, activity that is strongly implicated in cell migration and invasion associated with tumour metastasis, angiogenesis and inflammation. Heparanase up-regulation was documented in an increasing number of human carcinomas, correlating with reduced post-operative survival rate and enhanced tumour angiogenesis. Expression and significance of heparanase in human sarcomas has not been so far reported. Here, we applied the Ewing's sarcoma cell line TC71 and demonstrated a potent inhibition of cell invasion in vitro and tumour xenograft growth in vivo upon treatment with a specific inhibitor of heparanase enzymatic activity (compound SST0001, non-anticoagulant N-acetylated, glycol split heparin). Next, we examined heparanase expression and cellular localization by immunostaining of a cohort of 69 patients diagnosed with Ewing's sarcoma. Heparanase staining was noted in all patients. Notably, heparanase staining intensity correlated with increased tumour size (P = 0.04) and with patients' age (P = 0.03), two prognostic factors associated with a worse outcome. Our study indicates that heparanase expression is induced in Ewing's sarcoma and associates with poor prognosis. Moreover, it encourages the inclusion of heparanase inhibitors (i.e. SST0001) in newly developed therapeutic modalities directed against Ewing's sarcoma and likely other malignancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号