全文获取类型
收费全文 | 2289篇 |
免费 | 149篇 |
专业分类
2438篇 |
出版年
2023年 | 6篇 |
2022年 | 30篇 |
2021年 | 41篇 |
2020年 | 24篇 |
2019年 | 30篇 |
2018年 | 33篇 |
2017年 | 22篇 |
2016年 | 66篇 |
2015年 | 136篇 |
2014年 | 123篇 |
2013年 | 142篇 |
2012年 | 192篇 |
2011年 | 203篇 |
2010年 | 137篇 |
2009年 | 100篇 |
2008年 | 114篇 |
2007年 | 125篇 |
2006年 | 98篇 |
2005年 | 97篇 |
2004年 | 121篇 |
2003年 | 93篇 |
2002年 | 95篇 |
2001年 | 53篇 |
2000年 | 45篇 |
1999年 | 44篇 |
1998年 | 22篇 |
1997年 | 17篇 |
1996年 | 19篇 |
1995年 | 14篇 |
1994年 | 9篇 |
1993年 | 13篇 |
1992年 | 20篇 |
1991年 | 17篇 |
1990年 | 12篇 |
1989年 | 20篇 |
1988年 | 13篇 |
1987年 | 10篇 |
1986年 | 11篇 |
1985年 | 8篇 |
1984年 | 9篇 |
1983年 | 3篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 7篇 |
1975年 | 10篇 |
1974年 | 4篇 |
1972年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有2438条查询结果,搜索用时 21 毫秒
91.
92.
Store-operated Ca2+ channels (SOCs) are activated by depletion of intracellular Ca2+ stores following agonist-mediated Ca2+ release. Previously we demonstrated that Ca2+ influx through SOCs elicits exocytosis efficiently in pancreatic duct epithelial cells (PDEC). Here we describe the biophysical, pharmacological, and molecular properties of the duct epithelial SOCs using Ca2+ imaging, whole-cell patch-clamp, and molecular biology. In PDEC, agonists of purinergic, muscarinic, and adrenergic receptors coupled to phospholipase C activated SOC-mediated Ca2+ influx as Ca2+ was released from intracellular stores. Direct measurement of [Ca2+] in the ER showed that SOCs greatly slowed depletion of the ER. Using IP3 or thapsigargin in the patch pipette elicited inwardly rectifying SOC currents. The currents increased ∼8-fold after removal of extracellular divalent cations, suggesting competitive permeation between mono- and divalent cations. The current was completely blocked by high doses of La3+ and 2-aminoethoxydiphenyl borate (2-APB) but only partially depressed by SKF-96365. In polarized PDEC, SOCs were localized specifically to the basolateral membrane. RT-PCR screening revealed the expression of both STIM and Orai proteins for the formation of SOCs in PDEC. By expression of fluorescent STIM1 and Orai1 proteins in PDEC, we confirmed that colocalization of the two proteins increases after store depletion. In conclusion, basolateral Ca2+ entry through SOCs fills internal Ca2+ stores depleted by external stimuli and will facilitate cellular processes dependent on cytoplasmic Ca2+ such as salt and mucin secretion from the exocrine pancreatic ducts. 相似文献
93.
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant’s parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant. 相似文献
94.
95.
Koh?HasegawaEmail author Toshiaki?Yamamoto Masashi?Murakami Koji?Maekawa 《Ichthyological Research》2004,51(3):191-194
Brown trout, Salmo trutta, and rainbow trout, Oncorhynchus mykiss, have been introduced to freshwaters in Hokkaido, Japan. Today, it is recognized that these introduced salmonids have negative impacts on native salmonids such as white-spotted charr, Salvelinus leucomaenis, and masu salmon, O. masou. In particular, interspecific competition may be an important mechanism that could contribute to the exclusion for native salmonids. In this study, experimental pairwise contests were conducted to compare interference competitive ability between native and introduced salmonids. We demonstrated that brown trout were competitively superior to white-spotted charr and masu salmon whereas rainbow trout were superior to white-spotted charr. We suggest that introduced brown trout negatively impact both white-spotted charr and masu salmon, and introduced rainbow trout negatively impact white-spotted charr. 相似文献
96.
97.
JY Cho JY Kang YK Hong HH Baek HW Shin MS Kim 《Bioscience, biotechnology, and biochemistry》2012,76(6):1116-1121
Marine derived actinomycetes constituting 185 strains were screened for their antifouling activity against the marine seaweed, Ulva pertusa, and fouling diatom, Navicula annexa. Strain 291-11 isolated from the seaweed, Undaria pinnatifida, rhizosphere showed the highest antifouling activity and was identified as Streptomyces praecox based on a 16S rDNA sequence analysis. Strain 291-11 was therefore named S. praecox 291-11. The antifouling compounds from S. praecox 291-11 were isolated, and their structures were analyzed. The chemical constituents representing the antifouling activity were identified as (6S,3S)-6-benzyl-3-methyl-2,5-diketopiperazine (bmDKP) and (6S,3S)-6-isobutyl-3-methyl-2,5-diketopiperazine (imDKP) by interpreting the nuclear magnetic resonance and high-resolution mass spectroscopy data. Approximately 4.8 mg of bmDKP and 3.1 mg of imDKP were isolated from 1.2 g of the S. praecox 291-11 crude extract. Eight different compositions of culture media were investigated for culture, the TBFeC medium being best for bmDKP and TCGC being the optimum for imDKP production. Two compounds respectively showed a 17.7 and 21 therapeutic ratio (LC50/EC50) to inhibit zoospores, and two compounds respectively showed a 263 and 120.2 therapeutic ratio to inhibit diatoms. 相似文献
98.
Systems metabolic engineering of microorganisms for natural and non-natural chemicals 总被引:1,自引:0,他引:1
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels. 相似文献
99.
Toshihiko Sugiki Koh Takeuchi Toshiyuki Yamaji Toshiaki Takano Yuji Tokunaga Keigo Kumagai Kentaro Hanada Hideo Takahashi Ichio Shimada 《The Journal of biological chemistry》2012,287(40):33706-33718
Ceramide transport from the endoplasmic reticulum to the Golgi apparatus is crucial in sphingolipid biosynthesis, and the process relies on the ceramide trafficking protein (CERT), which contains pleckstrin homology (PH) and StAR-related lipid transfer domains. The CERT PH domain specifically recognizes phosphatidylinositol 4-monophosphate (PtdIns(4)P), a characteristic phosphoinositide in the Golgi membrane, and is indispensable for the endoplasmic reticulum-to-Golgi transport of ceramide by CERT. In this study, we determined the three-dimensional structure of the CERT PH domain by using solution NMR techniques. The structure revealed the presence of a characteristic basic groove near the canonical PtdIns(4)P recognition site. An extensive interaction study using NMR and other biophysical techniques revealed that the basic groove coordinates the CERT PH domain for efficient PtdIns(4)P recognition and localization in the Golgi apparatus. The notion was also supported by Golgi mislocalization of the CERT mutants in living cells. The distinctive binding modes reflect the functions of PH domains, as the basic groove is conserved only in the PH domains involved with the PtdIns(4)P-dependent lipid transport activity but not in those with the signal transduction activity. 相似文献
100.
Kazutaka Sumita Hirofumi Yoshino Mika Sasaki Nazanin Majd Emily Rose Kahoud Hidenori Takahashi Koh Takeuchi Taruho Kuroda Susan Lee Pascale G. Charest Kosuke Takeda John M. Asara Richard A. Firtel Dimitrios Anastasiou Atsuo T. Sasaki 《The Journal of biological chemistry》2014,289(7):3950-3959
Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers. 相似文献