首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   42篇
  2021年   5篇
  2020年   3篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   19篇
  2014年   8篇
  2013年   25篇
  2012年   26篇
  2011年   26篇
  2010年   22篇
  2009年   14篇
  2008年   26篇
  2007年   24篇
  2006年   27篇
  2005年   19篇
  2004年   21篇
  2003年   14篇
  2002年   21篇
  2001年   10篇
  2000年   6篇
  1999年   12篇
  1998年   8篇
  1997年   11篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1991年   5篇
  1990年   6篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1973年   2篇
  1971年   5篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1938年   3篇
排序方式: 共有493条查询结果,搜索用时 31 毫秒
41.
Inflammatory bowel diseases (IBDs) are complex disorders caused by a combination of environmental, microbial, and genetic factors. Genome-wide association studies in humans have successfully identified multiple genes and loci associated with disease susceptibility, but the mechanisms by which these loci interact with each other and/or with environmental factors (i.e., intestinal microbiota) to cause disease are poorly understood. Helicobacter hepaticus-induced intestinal inflammation in mice is an ideal model system for elucidating the genetic basis of IBD susceptibility in a bacterially induced system, as there are significant differences in H. hepaticus-induced disease susceptibility among inbred mouse strains. Infected A/J mice develop acute overexpression of proinflammatory cytokines followed 2?C3?months later by chronic cecal inflammation, whereas infected C57BL/6 mice fail to develop cecal inflammation or increased cytokine expression. The goal of this project was to use quantitative trait locus (QTL) mapping to evaluate genetic factors that contribute to the differential disease susceptibility between these two mouse strains. Using acute cecal IL-12/23p40 expression as a biomarker for disease susceptibility, QTL analysis of H. hepaticus-infected F2 mice revealed involvement of multiple loci. The loci with the strongest association were located on Chromosome 3 and Chromosome 17, with logarithm of odds (LOD) scores of 6.89 and 3.09, respectively. Cecal expression of IL-12/23p40 in H. hepaticus-infected C57BL/6J-Chr3A/J/NaJ chromosome substitution mice had an intermediate phenotype, significantly higher than in resistant C57BL/6 but lower than in susceptible A/J mice, confirming the importance of this locus to the immune response to H. hepaticus infection.  相似文献   
42.
Ecological restoration of plant-pollinator interactions has received surprisingly little attention, despite animal-mediated pollination underpinning reproduction of the majority of higher plants. Here, we offer a conceptual and practical framework for the ecological restoration of pollination mutualisms. Through the use of targeted restoration plantings to attract and sustain pollinators and increased knowledge of the ecological requirements of pollinators, we propose that pollination could be successfully restored in degraded ecosystems. The challenge for pollination biologists is to integrate their findings with those of plant restoration ecologists to ensure sustainable pollination in restored ecosystems.  相似文献   
43.
The increasing volume of ChIP-chip and ChIP-seq data being generated creates a challenge for standard, integrative and reproducible bioinformatics data analysis platforms. We developed a web-based application called Cistrome, based on the Galaxy open source framework. In addition to the standard Galaxy functions, Cistrome has 29 ChIP-chip- and ChIP-seq-specific tools in three major categories, from preliminary peak calling and correlation analyses to downstream genome feature association, gene expression analyses, and motif discovery. Cistrome is available at http://cistrome.org/ap/.  相似文献   
44.
45.
46.
Thrombin catalyzes the proteolytic activation of factor VIII, cleaving two sites in the heavy chain and one site in the light chain of the procofactor. Evaluation of thrombin binding the reaction products from heavy chain cleavage by steady state fluorescence energy transfer using a fluorophore-labeled, active site-modified thrombin as well as by solid phase binding assays using a thrombin Ser(205) --> Ala mutant indicated a high affinity site in the A1 subunit (K(d) approximately 5 nm) that was dependent upon the Na(+)-bound form of thrombin, whereas a moderate affinity site in the A2 subunit (K(d) approximately 100 nm) was observed for both Na(+)-bound and -free forms. The solid phase assay also indicated that hirudin blocked thrombin interaction with the A1 subunit and had little, if any, effect on its interaction with the A2 subunit. Conversely, heparin blocked thrombin interaction with the A2 subunit and showed a marginal effect on A1 binding. Evaluation of the A2 sequence revealed two regions rich in acidic residues that are localized close to the N and C termini of this domain. Peptides encompassing these clustered acidic regions, residues 373-395 and 719-740, blocked thrombin cleavage of the isolated heavy chain at Arg(372) and Arg(740) and inhibited A2 binding to thrombin Ser(205) --> Ala, suggesting that both A2 domain regions potentially support interaction with thrombin. A B-domainless, factor VIII double mutant Asp(392) --> Ala/Asp(394) --> Ala was constructed, expressed, and purified and possessed specific activity equivalent to a severe hemophilia phenotype. This mutant was resistant to cleavage at Arg(740), whereas cleavage at Arg(372) was not affected. These data suggest the acidic region comprising residues 389-394 in factor VIII A2 domain interacts with thrombin via its heparin-binding exosite and facilitates cleavage at Arg(740) during procofactor activation.  相似文献   
47.
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.  相似文献   
48.
In the subterranean termite Reticulitermes flavipes, allatostatins (ASTs) with the C-terminus Phe-Gly Leu-amide were localized by immunocytochemistry with antibody against a cockroach AST, Dippu AST-7. AST-immunoreactivity occurred in the corpus cardiacum and corpus allatum and in the lateral and medial neurosecretory cells of the brain that innervate these organs as well as in many other nerve cells of the brain. This was observed in workers, nymphs, soldiers and secondary reproductives. A radioimmunoassay, using anti-Dippu AST-11, demonstrated about 40 fmole equivalents of AST in brains of soldiers and secondary reproductives. The product of the corpora allata in this species was determined to be juvenile hormone III. Its synthesis by corpora allata of secondary reproductives, determined by in vitro radiochemical assay, was inhibited in a dose-dependent fashion by two cockroach allatostatins, Dippu AST-7 and Dippu AST-11. Thus, as in cockroaches and crickets, allatostatin-containing nerves innervate the corpora allata of this termite species and their production of juvenile hormone is inhibited by these neuropeptides.  相似文献   
49.
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.  相似文献   
50.
Cytochrome P450 BioI (CYP107H1) from Bacillus subtilis is involved in the early stages of biotin synthesis. Previous studies have indicated that BioI can hydroxylate fatty acids and may also perform an acyl bond cleavage reaction [Green, A. J., Rivers, S. L., Cheesman, M., Reid, G. A., Quaroni, L. G., Macdonald, I. D. G., Chapman, S. K., and Munro, A. W. (2001) J. Biol. Inorg. Chem. 6, 523-533. Stok, J. E., and De Voss, J. J. (2000) Arch. Biochem. Biophys. 384, 351-360]. Here we show novel binding features of P450 BioI--specifically that it binds steroids (including testosterone and progesterone) and polycyclic azole drugs with similar affinity to that for fatty acids (K(d) values in the range 0.1-160 microM). Sigmoidal binding curves for titration of BioI with azole drugs suggests a cooperative process in this case. BioI as isolated from Escherichia coli is in a mixed heme iron spin state. Alteration of the pH of the buffer system affects the heme iron spin-state equilibrium (higher pH increasing the low-spin content). Steroids containing a carbonyl group at the C(3) position induce a shift in heme iron spin-state equilibrium toward the low-spin form, whereas fatty acids produce a shift toward the high-spin form. Electron paramagnetic resonance (EPR) studies confirm the heme iron spin-state perturbation inferred from optical titrations with steroids and fatty acids. Potentiometric studies demonstrate that the heme iron reduction potential becomes progressively more positive as the proportion of high-spin heme iron increases (potential for low-spin BioI = -330 +/- 1 mV; for BioI as purified from E. coli (mixed-spin) = 228 +/- 2 mV; for palmitoleic acid-bound BioI = -199 +/- 2 mV). Extraction of bound substrate-like molecule from purified BioI indicates palmitic acid to be bound. Differential scanning calorimetry studies indicate that the BioI protein structure is stabilized by binding of steroids and bulky azole drugs, a result confirmed by resonance Raman studies and by analysis of disruption of BioI secondary and tertiary structure by the chaotrope guanidinium chloride. Molecular modeling of the BioI structure indicates that a disulfide bond is present between Cys250 and Cys275. Calorimetry shows that structural stability of the protein was altered by addition of the reductant dithiothreitol, suggesting that the disulfide is important to integrity of BioI structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号