首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   23篇
  国内免费   1篇
  189篇
  2021年   1篇
  2020年   5篇
  2018年   5篇
  2017年   1篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   11篇
  2011年   12篇
  2010年   10篇
  2009年   12篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   8篇
  1999年   4篇
  1998年   10篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1975年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
61.
A protein superfamily with a “Domain of Unknown Function,”, DUF3349 (PF11829), is present predominately in Mycobacterium and Rhodococcus bacterial species suggesting that these proteins may have a biological function unique to these bacteria. We previously reported the inaugural structure of a DUF3349 superfamily member, Mycobacterium tuberculosis Rv0543c. Here, we report the structures determined for three additional DUF3349 proteins: Mycobacterium smegmatis MSMEG_1063 and MSMEG_1066 and Mycobacterium abscessus MAB_3403c. Like Rv0543c, the NMR solution structure of MSMEG_1063 revealed a monomeric five α‐helix bundle with a similar overall topology. Conversely, the crystal structure of MSMEG_1066 revealed a five α‐helix protein with a strikingly different topology and a tetrameric quaternary structure that was confirmed by size exclusion chromatography. The NMR solution structure of a fourth member of the DUF3349 superfamily, MAB_3403c, with 18 residues missing at the N‐terminus, revealed a monomeric α‐helical protein with a folding topology similar to the three C‐terminal helices in the protomer of the MSMEG_1066 tetramer. These structures, together with a GREMLIN‐based bioinformatics analysis of the DUF3349 primary amino acid sequences, suggest two subfamilies within the DUF3349 family. The division of the DUF3349 into two distinct subfamilies would have been lost if structure solution had stopped with the first structure in the DUF3349 family, highlighting the insights generated by solving multiple structures within a protein superfamily. Future studies will determine if the structural diversity at the tertiary and quaternary levels in the DUF3349 protein superfamily have functional roles in Mycobacteria and Rhodococcus species with potential implications for structure‐based drug discovery.  相似文献   
62.
There are gaps in existing understanding of fungal pellet growth dynamics. We used scanning electron microscopy (SEM) for morphological characterization of the biomass organization of Termitomyces pellets for seven species: T. microcarpus (TMI1), T. albuminosus (TAL1, TAL2), T. striatus (TSTR), T. aurantiacus (TAUR), T. heimii (THE1, THE2), T. globulus (TGLO) and T. clypeatus (TCL1, TCL2, TCL3, TCL4, TCL5). We assessed the utility of SEM for morphological and structural characterization of Termitomyces spp. in three dimensional (3D) pellet form to identify ideal pellet morphology for industrial use. Typological classification of Termitomyces species was based on furrows, isotropy, total motifs and fractal dimensions. The pellets formed were entangled and exhibited highly compacted mycelial mass with microheterogeneity and microporosity. The mean density of furrows of Termitomyces species was between 10,000 and 11,300 cm/cm2, percentage isotropy was 30?80 and total motifs varied from 300 to 2500. TGLO exhibited the highest furrow mean density, 11243 cm/cm2, which indicated a compact, cerebroid structure with complex ridges and furrows, whereas TAL2 exhibited the lowest furrow density. TMI1a exhibited a high percentage isotropic value, 74.6, TSTR exhibited the lowest, 30.9. Total motif number also was used as a typological classification parameter. Fractal values were 2.64?2.78 for various submerged conditions of Termitomyces species. TAL1 exhibited the highest fractal dimension and TAL2 the lowest, which indicates the complexity of branching patterns. Three-dimensional SEM image analysis can provide insight into pellet micromorphology and is a powerful tool for exploring topographical details of pellets.  相似文献   
63.
Unusual pattern of bacterial ice nucleation gene evolution   总被引:5,自引:0,他引:5  
Bacterial ice nucleation activity (INA+ phenotype) can be traced to the product of a single gene, ina. A remarkably sparse distribution of this phenotype within three bacterial genera indicates that the ina gene may have followed an unusual evolutionary path. Southern blot analyses, coupled with assays for ice-nucleating ability, revealed that within four bacterial species an ina gene is present in some strains but absent from others. Results of hybridization experiments using DNA fragments that flank the ina gene suggested that the genotypic dimorphism of ina may be anomalous. A phylogenetic analysis of 16S ribosomal RNA gene sequences from a total of 14 ina+ and ina- bacterial strains indicated that the ina+ bacteria are not monophyletic but instead phylogenetically interspersed among ina- bacteria. The relationships of ina+ bacteria inferred from ina sequence did not coincide with those inferred from the 16S data. These results suggest the possibility of horizontal transfer in the evolution of bacterial ina genes.   相似文献   
64.
65.
RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing.  相似文献   
66.

Background

Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region.

Methodology/Principal Findings

Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs.

Conclusions/Significance

The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics.  相似文献   
67.
S Rasmussen  RA Dixon 《The Plant cell》1999,11(8):1537-1552
3H-l-Phenylalanine is incorporated into a range of phenylpropanoid compounds when fed to tobacco cell cultures. A significant proportion of (3)H-trans-cinnamic acid formed from (3)H-l-phenylalanine did not equilibrate with exogenous trans-cinnamic acid and therefore may be rapidly channeled through the cinnamate 4-hydroxylase (C4H) reaction to 4-coumaric acid. Such compartmentalization of trans-cinnamic acid was not observed after elicitation or in cell cultures constitutively expressing a bean phenylalanine ammonia-lyase (PAL) transgene. Channeling between PAL and C4H was confirmed in vitro in isolated microsomes from tobacco stems or cell suspension cultures. This channeling was strongly reduced in microsomes from stems or cell cultures of transgenic PAL-overexpressing plants or after elicitation of wild-type cell cultures. Protein gel blot analysis showed that tobacco PAL1 and bean PAL were localized in both soluble and microsomal fractions, whereas tobacco PAL2 was found only in the soluble fraction. We propose that metabolic channeling of trans-cinnamic acid requires the close association of specific forms of PAL with C4H on microsomal membranes.  相似文献   
68.
69.
70.
Using the large subunit of RuBisCo (rbcL) sequences from cyanobacteria, proteobacteria, and diverse groups of algae and green plants, we evaluated the plastid relationship between haptophytes and heterokont algae. The rbcL sequences were determined from three taxa of heterokont algae (Bumilleriopsis filiformis, Pelagomonas calceolata, and Pseudopedinella elastica) and added to 25 published sequences to obtain a data set comprising 1,434 unambiguously aligned sites (approximately 98% of the total rbcL gene). Higher levels of mutational saturation in third codon positions were observed by plotting the pairwise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In accordance with this finding phylogeny reconstructions were completed by omitting third codon positions, thus using 956 bp in weighted-parsimony and maximum-likelihood analyses. The midpoint-rooted phylogenies showed two major clusters, one containing cyanobacteria, glaucocystophytes, a phototrophic euglenoid, chlorophytes, and embryophytes (the green lineage), the other containing proteobacteria, haptophytes, red algae, a cryptophyte, and heterokont algae (the non-green lineage). In the nongreen lineage, the haptophytes formed a sister group to the clade containing heterokont algae, red algae, and the cryptophyte Guillardia theta. This branching pattern was well supported in terms of bootstrap values in weighted- parsimony and maximum-likelihood analyses (100% and 92%, respectively). However, the phylogenetic relationship among red algae, heterokonts, and a cryptophyte taxon was not especially well resolved. A four- cluster analysis was performed to further explore the statistical significance of the relationship between proteobacteria, red algae (including and excluding Guillardia theta), haptophytes, and heterokont algae. This test strongly favored the hypothesis that the heterokonts and red algae are more closely related to each other than either is to proteobacteria or haptophytes. Hence, this molecular study based on a plastid-encoded gene provides additional evidence for a distant relationship between haptophytes and the heterokont algae. It suggests an evolutionary scenario in which the ancestor of the haptophyte lineage engulfed a phototrophic eukaryote and, more recently, the heterokont lineage became phototrophic by engulfing a red alga.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号