首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   12篇
  国内免费   1篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   18篇
  2013年   19篇
  2012年   32篇
  2011年   21篇
  2010年   20篇
  2009年   29篇
  2008年   25篇
  2007年   29篇
  2006年   20篇
  2005年   22篇
  2004年   26篇
  2003年   25篇
  2002年   21篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1968年   1篇
  1964年   1篇
  1961年   3篇
  1958年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
61.
62.
The red pigments in meat products, including cooked cured ham, arise from the reaction of myoglobin with nitric oxide generated from exogenous nitrite. Since carcinogenic nitrosoamines may be generated by the treatment of meats with nitrite, the production of nitrite-free meat products is an attractive alternative. Raw dry-cured (Parma) hams are produced by the treatment of meats with salts other than nitrite. Analysis of pigments in raw dry-cured hams reveals that the main pigment is zinc protoporphyrin, suggesting that the conversion of heme to zinc protoporphyrin occurs via an iron-removal reaction from myoglobin heme during the processing of raw hams. Purification of the iron-removal enzyme showed that it was identical to ferrochelatase. Recombinant ferrochelatase in combination with NADH-cytochrome b5 reductase catalyzed NADH-dependent iron-removal reaction from hemin and hemoproteins. Metal ions such as zinc and cobalt were also removed from the corresponding metalloporphyrins. The addition of zinc ions led to the formation of zinc protoporphyrin. In cultured cells, the conversion of zinc mesoporphyrin to mesoheme was observed to be dependent on ferrochelatase and could be markedly induced during erythroid differentiation. This is the first demonstration of a new enzyme reaction, the reverse reaction of ferrochelatase, which may contribute to a new route of the recycling of protoporphyrin and heme in cells.  相似文献   
63.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   
64.
Molecular characters may offer a useful alternative to confidently estimate the phylogenetic position of paedomorphic taxa otherwise difficult to place based on morphology because of the reduction or absence of characters in their larvae-like adult stage. Here, we sequenced the complete mitogenome of a remarkable undescribed marine paedomorphic clupeiform fish to gain insight into its phylogenetic position. Of a length of 17,507 bp, this mitogenome exhibits a unique gene order within the Teleostei because of the inversion of the contiguous tRNAGln and tRNAIle within the IQM region and the presence of a putative second control region inserted between these tRNAs. Mitogenomic data from 27 clupeiform species and 22 non-clupeiform species were subjected to partitioned maximum likelihood and Bayesian analyses. All resultant phylogenetic trees strongly supported the placement of this undescribed taxon within the order Clupeiformes, suborder Clupeoidei, and the family Clupeidae, as the sister group of the tribe Spratelloidini (Jenkinsia Spratelloides) of the subfamily Dussumieriinae. Together, they form a monophyletic group with Chirocentrus and, possibly, Etrumeus. Despite its overall resemblance to Sundasalanx, this undescribed taxa (Clupeidae gen. et sp. indet.) is not closely related to that genus and represents an independent paedomorphic lineage within the Clupeoidei. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
65.
The phylogenetic relationships of species are fundamental to any biological investigation, including all evolutionary studies. Accurate inferences of sister group relationships provide the researcher with an historical framework within which the attributes or geographic origin of species (or supraspecific groups) evolved. Taken out of this phylogenetic context, interpretations of evolutionary processes or origins, geographic distributions, or speciation rates and mechanisms, are subject to nothing less than a biological experiment without controls. Cypriniformes is the most diverse clade of freshwater fishes with estimates of diversity of nearly 3,500 species. These fishes display an amazing array of morphological, ecological, behavioral, and geographic diversity and offer a tremendous opportunity to enhance our understanding of the biotic and abiotic factors associated with diversification and adaptation to environments. Given the nearly global distribution of these fishes, they serve as an important model group for a plethora of biological investigations, including indicator species for future climatic changes. The occurrence of the zebrafish, Danio rerio, in this order makes this clade a critical component in understanding and predicting the relationship between mutagenesis and phenotypic expressions in vertebrates, including humans. With the tremendous diversity in Cypriniformes, our understanding of their phylogenetic relationships has not proceeded at an acceptable rate, despite a plethora of morphological and more recent molecular studies. Most studies are pre-Hennigian in origin or include relatively small numbers of taxa. Given that analyses of small numbers of taxa for molecular characters can be compromised by peculiarities of long-branch attraction and nodal-density effect, it is critical that significant progress in our understanding of the relationships of these important fishes occurs with increasing sampling of species to mitigate these potential problems. The recent Cypriniformes Tree of Life initiative is an effort to achieve this goal with morphological and molecular (mitochondrial and nuclear) data. In this early synthesis of our understanding of the phylogenetic relationships of these fishes, all types of data have contributed historically to improving our understanding, but not all analyses are complementary in taxon sampling, thus precluding direct understanding of the impact of taxon sampling on achieving accurate phylogenetic inferences. However, recent molecular studies do provide some insight and in some instances taxon sampling can be implicated as a variable that can influence sister group relationships. Other instances may also exist but without inclusion of more taxa for both mitochondrial and nuclear genes, one cannot distinguish between inferences being dictated by taxon sampling or the origins of the molecular data.  相似文献   
66.
Heterotypy is now recognized as a generative force in the formationof new proteins through modification of existing proteins. Wereport that heterotypy in the N-terminal region of the maturegrowth/differentiation factor 5 (GDF5) protein occurred duringevolution of teleosts. N-terminal length variation of GDF5 wasfound among teleost interfamilies and interorders but not withinteleost families or among tetrapods. We further show that increaseof proline and glutamine to the N-terminal region of matureGDF5 occurred in Eurypterygii, the higher lineage of teleosts.Because the basic amino acids, believed to control diffusion,are conserved in this region across all species examined, wesuggest that the N-terminal elongation of the mature GDF5 proteinduring evolution has altered the protein diffusion in Eurypterygii,leading to high concentrations of the protein in the joint ofthe pharyngeal skeleton, the location of cartilage formationduring development.  相似文献   
67.
The beta-substituted alanine (Ala) synthase (Bsas) family in the large superfamily of pyridoxal 5'-phosphate-dependent enzymes comprises cysteine (Cys) synthase (CSase) [O-acetyl-serine (thiol) lyase] and beta-cyano-Ala synthase (CASase) in plants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles of these Bsas isoforms in vivo were investigated by the characterization of T-DNA insertion mutants. Analyses of gene expression, activities of CSase and CASase, and levels of Cys and glutathione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles in Cys biosynthesis. Cytosolic Bsas1;1 has the most dominant contribution both in leaf and root, and mitochondrial Bsas2;2 plays a significant role in root. Mitochondrial Bsas3;1 is a genuine CASase. Nontargeted metabolome analyses of knockout mutants were carried out by a combination of gas chromatography time-of-flight mass spectrometry and capillary electrophoresis time-of-flight mass spectrometry. The level of gamma-glutamyl-beta-cyano-Ala decreased in the mutant bsas3;1, indicating the crucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo.  相似文献   
68.
69.
Hashiguchi Y  Nishida M 《Gene》2009,429(1-2):74-79
To study evolution of dinucleotide simple sequence repeats (diSSRs) we searched recently available mammalian genomes for UTR-localized diSSRs with conserved upstream flanking sequences (CFS). There were 252 reported Homo sapiens genes containing the repeats (AC)n, (GT)n, (AG)n or (CT)n in their UTRs including 22 (8.7%) with diSSR-upstream flanking sequences conserved comparing divergent mammalian lineages represented by Homo sapiens and the marsupial, Monodelphis domestica. Of these 22 genes, 19 had known functions including 18 (95%) that proved critical for mammalian nervous systems (Fishers exact test, P<0.0001). The remaining gene, Cd2ap, proved critical for development of kidney podocytes, cells that have multiple similarities to neurons. Gene functions included voltage and chloride channels, synapse-associated proteins, neurotransmitter receptors, axon and dendrite pathfinders, a NeuroD potentiator and other neuronal activities. Repeat length polymorphism was confirmed for 68% of CFS diSSRs even though these repeats were nestled among highly conserved sequences. This finding supports a hypothesis that SSR polymorphism has functional implications. A parallel study was performed on the self-complementary diSSRs (AT)n and (GC)n. When flanked by conserved sequences, the self-complementary diSSR (AT)n was also associated with genes expressed in the developing nervous system. Our findings implicate functional roles for diSSRs in nervous system development.  相似文献   
70.
The continental distributions of freshwater fishes in the family Notopteridae (Osteoglossomorpha) across Africa, India, and Southeast Asia constitute a long standing and enigmatic problem of freshwater biogeography. The migrational pathway of the Asian notopterids has been discussed in light of two competing schemes: the first posits recent transcontinental dispersal while the second relies on distributions being shaped by ancient vicariance associated with plate-tectonic events. In this study, we determined complete mitochondrial DNA sequences from 10 osteoglossomorph fishes to estimate phylogenetic relationships using partitioned Bayesian and maximum likelihood methods and divergence dates of the family Notopteridae with a partitioned Bayesian approach. We used six species representing the major lineages of the Notopteridae and seven species from the remaining osteoglossomorph families. Fourteen more-derived teleosts, nine basal actinopterygians, two coelacanths, and one shark were used as outgroups. Phylogenetic analyses indicated that the African and Asian notopterids formed a sister group to each other and that these notopterids were a sister to a clade comprising two African families (Mormyridae and Gymnarchidae). Estimated divergence time between the African and Asian notopterids dated back to the early Cretaceous when India–Madagascar separated from the African part of Gondwanaland. Thus, estimated time of divergence based on the molecular evidence is at odds with the recent dispersal model. It can be reconciled with the geological and paleontological evidence to support the vicariance model in which the Asian notopterids diverged from the African notopterids in Gondwanaland and migrated into Eurasia on the Indian subcontinent from the Cretaceous to the Tertiary. However, we could not exclude an alternative explanation that the African and Asian notopterids diverged in Pangea before its complete separation into Laurasia and Gondwanaland, to which these two lineages were later confined, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号