首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   32篇
  国内免费   1篇
  283篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   14篇
  2011年   12篇
  2010年   6篇
  2009年   6篇
  2008年   20篇
  2007年   18篇
  2006年   17篇
  2005年   25篇
  2004年   6篇
  2003年   12篇
  2002年   14篇
  2001年   13篇
  2000年   14篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   10篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   6篇
  1981年   2篇
  1977年   2篇
  1969年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
71.
72.
Ghrelin is implicated in growth and feeding regulation in fish. The influence of ghrelin on behavior has not been well studied and the physiological role of des-fatty acid modification of this peptide is unclear. Therefore, the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic n-octanoylated (acyl) goldfish ghrelin and des-n-octanoylated (des-acyl) ghrelin on locomotor and orexigenic activity in the goldfish were examined. ICV administration of acyl ghrelin at doses of 1 and 2 pmol/g body weight (BW) and IP administration at 16 pmol/g BW both induced significant increases in locomotor activity during for 45-60 min after treatment. Cumulative food intake was significantly increased by ICV injection of acyl ghrelin at doses of 1 and 2 pmol/g BW and IP injection at 8 and 16 pmol/g BW during the 60-min post-treatment observation period. In contrast, ICV and IP administration of des-acyl ghrelin produced no changes in locomotor and orexigenic activity. We also analyzed fasting-induced changes in the expression of ghrelin mRNA in the brain and intestine using a real-time PCR method. The level of ghrelin mRNA in the intestine, but not in the brain, obtained from fish fasted for 7 days was significantly higher than that in fish that had been fed normally. These results suggest that, in the goldfish, acyl ghrelin, but not des-acyl ghrelin, stimulates locomotor activity and enhances food intake via central and peripheral pathways.  相似文献   
73.
Pituitary adenylate cyclase-activating peptide (PACAP) is known to regulate not only neurons but also astrocytes. Here, we investigated, both in vitro and in vivo, the effects of PACAP38 on rat Müller cells, which are the predominant glial element in the retina. Müller cells isolated from juvenile Wistar rats were treated with PACAP38 or PACAP6-38, a PACAP selective antagonist. Cell proliferation was determined by measuring the incorporation of bromodeoxyuridine with ELISA. Interleukin-6 (IL-6) levels in the culture medium were determined by a bioassay using B9 cells, IL-6 dependent hybridoma. In adult Wistar rats, the expression of IL-6 in the retina after intravitreal injection of PACAP38 (10 pmol) was assessed by immunohistochemistry. PACAP38 stimulated IL-6 production in Müller cells at a concentration as low as 10(-12) M, which did not induce cell proliferation. This elevation of IL-6 production was inhibited by PACAP6-38. Radial IL-6 expression was observed throughout the retina at 2 and 3 days after PACAP38 injection. These data demonstrate that Müller cells are one of the target cells for PACAP. IL-6, which is released from Müller cells with stimulation by PACAP, may play a significant role in the retina.  相似文献   
74.
Rho-kinase is a main player in the regulation of cytoskeletal events and a promising drug target in the treatment of both vascular and neurological disorders. Here we report the crystal structure of the Rho-kinase catalytic domain in complex with the specific inhibitor Y-27632. Comparison with the structure of PKA bound to this inhibitor revealed a potential induced-fit binding mode that can be accommodated by the phosphate binding loop. This binding mode resembles to that observed in the Rho-kinase-fasudil complex. A structural database search indicated that a pocket underneath the phosphate-binding loop is present that favors binding to a small aromatic ring. Introduction of such a ring group might spawn a new modification scheme of pre-existing protein kinase inhibitors for improved binding capability.  相似文献   
75.
In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh−/− embryos. Using Shh−/− and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.  相似文献   
76.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike the orexigenic action in rodents, via the melanocortin system with suppression of neuropeptide Y (NPY) mRNA expression. We therefore investigated the neuronal relationship between MCH- and NPY-containing neurons in the goldfish brain, using a double-immunofluorescence method and confocal laser scanning microscopy. MCH- and NPY-like immunoreactivities were distributed throughout the brain. In particular, MCH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These observations suggest that MCH-containing neurons provide direct input to NPY-containing neurons in the NPPv of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide, inhibiting the orexigenic activity of NPY.  相似文献   
77.
Rho-kinase is a key regulator of cytoskeletal events and a promising drug target in the treatment of vascular diseases and neurological disorders. Unlike other protein kinases, Rho-kinase requires both N- and C-terminal extension segments outside the kinase domain for activity, although the details of this requirement have been elusive. The crystal structure of an active Rho-kinase fragment containing the kinase domain and both the extensions revealed a head-to-head homodimer through the N-terminal extension forming a helix bundle that structurally integrates the C-terminal extension. This structural organization enables binding of the C-terminal hydrophobic motif to the N-terminal lobe, which defines the correct disposition of helix alphaC that is important for the catalytic activity. The bound inhibitor fasudil significantly alters the conformation and, consequently, the mode of interaction with the catalytic cleft that contains local structural changes. Thus, both kinase and drug conformational pliability and stability confer selectivity.  相似文献   
78.
79.
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.  相似文献   
80.
Time-dependent changes in brain and spinal cord were studied in mice in a cardiac arrest model. A transient decrease in body weight and a prolonged decrease in brain weight occurred after arrest whereas spinal cord weight was unchanged. The permeability of the blood-brain barrier (BBB) to I131-albumin and I131 tumor necrosis factor-alpha (TNF) showed maximal, non-significant increases on day 5 after cardiac arrest, but the permeability of the blood-spinal cord barrier (BSCB) to both materials was unchanged with time. We conclude that selective weight loss occurs in the brain after cardiac arrest with the integrity of the BBB and BSCB remaining intact to serum proteins and minimal alteration in the blood to CNS transport of TNF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号