首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   7篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2018年   6篇
  2017年   1篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   13篇
  2011年   16篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1965年   1篇
排序方式: 共有130条查询结果,搜索用时 140 毫秒
101.

Rationale

HMG-CoA reductase inhibitors such as rosuvastatin may have immunomodulatory and anti-inflammatory effects that may reduce the severity of influenza A infection. We hypothesized that rosuvastatin would decrease viral replication, attenuate lung injury, and improve mortality following influenza A infection in mice.

Methods

C57Bl/6 mice were treated daily with rosuvastatin (10 mg/kg/day) supplemented in chow (or control chow) beginning three days prior to infection with either A//Udorn/72 [H3N2] or A/WSN/33 [H1N1] influenza A virus (1×105 pfu/mouse). Plaque assays were used to examine the effect of rosuvastatin on viral replication in vitro and in the lungs of infected mice. We measured cell count with differential, protein and cytokines in the bronchoalveolar lavage (BAL) fluid, histologic evidence of lung injury, and wet-to-dry ratio on Day 1, 2, 4, and 6. We also recorded daily weights and mortality.

Results

The administration of rosuvastatin had no effect on viral clearance of influenza A after infection. Weight loss, lung inflammation and lung injury severity were similar in the rosuvastatin and control treated mice. In the mice infected with influenza A (A/WSN/33), mortality was unaffected by treatment with rosuvastatin.

Conclusions

Statins did not alter the replication of influenza A in vitro or enhance its clearance from the lung in vivo. Statins neither attenuated the severity of influenza A-induced lung injury nor had an effect on influenza A-related mortality. Our data suggest that the association between HMG CoA reductase inhibitors and improved outcomes in patients with sepsis and pneumonia are not attributable to their effects on influenza A infection.  相似文献   
102.
A common observation after in vitro matured oocyte is that they yield poorer embryo quality compared to their in vivo counterparts. This study was designed to assess chromosomal status with metaphase comparative genomic hybridization after in vitro maturation (IVM) in unstimulated cycles and compare the results with those obtained after in vivo maturation. Patients without any obstetrical or gynecological pathology were admitted into the study. IVM oocytes were collected 36 h post hCG and matured in vitro at 37°C in 5% O2, 6% CO2, and 89% air for 36 h. All matured (metaphase II) oocytes were subject to polar body 1 (PB-1) biopsy and vitrified individually. PB-1 samples were transferred into 0.25 cc PCR tubes containing 2.5 μl of PBS. PB-1 samples from 12 IVM patients were studied. Twenty-six out of 63 PB-1 samples (41%) were determined as euploid and 37 samples (59%) were aneuploid, whereas these values were 42% euploid and 58% aneuploid in the control group (in vivo matured oocytes). No statistical differences were found between the IVM and the control groups for euploid–aneuploid samples (P = 0.900). More aneuploidy was observed on chromosomes 11, 13, 15, 21, and 22 after IVM. Results show a non-significant rate of abnormal PB-1 formation after IVM compared to in vivo maturation. More aneuploidy was observed in chromosomes 11, 13, 15, 21, and 22 in the IVM group.  相似文献   
103.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   
104.
In the present study, the general stem, root and leaf anatomical features of 59 Scorzonera L. s.l. (Asteraceae) taxa collected from Turkey are presented and evaluated by cluster and principal coordinate analysis. Numerical analyses based on 26 anatomical traits showed that arrangement of tracheal elements in the root, presence of cortical bundles, latex canals, secretory cells and aerenchyma in the stem and mesophyll are valuable for grouping Scorzonera taxa. Dendograms inferred from anatomical data were generally congruent with the traditional subgeneric classification of Scorzonera (Scorzonera L., Podospermum DC., Pseudopodospermum (Lipsch. et Krasch.) Lipsch.). However, the present study also show that the examined species may not be identified only based on the internal morphology of root, stem and leaf. In addition, the results support to treat Podospermum as a distinct genus.  相似文献   
105.
106.
We have previously reported that airborne particulate matter air pollution (PM) activates the intrinsic apoptotic pathway in alveolar epithelial cells through a pathway that requires the mitochondrial generation of reactive oxygen species (ROS) and the activation of p53. We sought to examine the source of mitochondrial oxidant production and the molecular links between ROS generation and the activation of p53 in response to PM exposure. Using a mitochondrially targeted ratiometric sensor (Ro-GFP) in cells lacking mitochondrial DNA (ρ0 cells) and cells stably expressing a small hairpin RNA directed against the Rieske iron-sulfur protein, we show that site III of the mitochondrial electron transport chain is primarily responsible for fine PM (PM2.5)-induced oxidant production. In alveolar epithelial cells, the overexpression of SOD1 prevented the PM2.5-induced ROS generation from the mitochondria and prevented cell death. Infection of mice with an adenovirus encoding SOD1 prevented the PM2.5-induced death of alveolar epithelial cells and the associated increase in alveolar-capillary permeability. Treatment with PM2.5 resulted in the ROS-mediated activation of the oxidant-sensitive kinase ASK1 and its downstream kinase JNK. Murine embryonic fibroblasts from ASK1 knock-out mice, alveolar epithelial cells transfected with dominant negative constructs against ASK1, and pharmacologic inhibition of JNK with SP600125 (25 μm) prevented the PM2.5-induced phosphorylation of p53 and cell death. We conclude that particulate matter air pollution induces the generation of ROS primarily from site III of the mitochondrial electron transport chain and that these ROS activate the intrinsic apoptotic pathway through ASK1, JNK, and p53.Epidemiologic studies have consistently demonstrated a strong link between the daily levels of particulate matter air pollution <2.5 μm in diameter (PM2.5)3 and PM <10 μmin diameter (PM10) and cardiopulmonary morbidity and mortality (13). In humans, exposure to PM10 has been associated with an increase in mortality from ischemic cardiovascular events including stroke and myocardial infarction, an acceleration in the age-related decline in lung function in normal adults, impairment in normal lung development in children, exacerbations of asthma in children and adults, accelerated atherosclerosis in women, increased rates of lung cancer, and the development of myocardial ischemia in men with stable coronary artery disease (410). The intracellular generation of reactive oxygen species (ROS) has emerged as a common mechanism by which particulates might initiate signaling pathways that end in these diverse pathologic conditions (11). We have reported that the PM-induced generation of ROS requires a functional electron transport chain, suggesting that PM might induce the inadvertent transfer of electrons from one or more sites in the electron transport chain to molecular oxygen (12).One of the mechanisms by which exposure to PM can contribute to alveolar epithelial dysfunction, lung injury and inflammation, and lung cancer is by activating the intrinsic apoptotic pathway to induce cell death (11, 12). We have reported that this process requires the activation of p53; however, the molecular events linking the generation of ROS by the mitochondrial electron transport chain with the activation of p53 are not known (12). In this paper, we show that exposure of alveolar epithelial cells to PM2.5 induces the generation of ROS from site III of the mitochondrial electron transport chain. These mitochondrially derived oxidants activate the mitogen-activated signaling kinase kinase kinase (MAPKKK) apoptosis signaling kinase 1 (ASK1), which activates the c-Jun N-terminal kinase (JNK) signaling pathway. The activation of JNK is required for the phosphorylation of p53 and the subsequent cell death. Inhibition of mitochondrial oxidant production in mouse lungs prevents PM2.5-induced cell death and the associated PM2.5-induced increase in the permeability of the alveolar-capillary barrier.  相似文献   
107.
The aim of this study was to produce galactooligosaccharides (GOS) from lactose using β-galactosidase from Aspergillus oryzae immobilized on a low-pressure plasma-modified cellulose acetate (CA) membrane. Specifically, a novel method was developed for multilayer enzyme immobilization involving polyethyleneimine (PEI)-enzyme aggregate formation and growth on a CA membrane. A large amount of enzyme (997 μg/cm2 membrane) was immobilized with 66% efficiency. The K m value for the immobilized enzyme was estimated to be 48 mM, which indicates decreased affinity for the substrate, whereas the Vmax value was smaller. The immobilized enzyme showed good storage and operational stability. The half-life of the immobilized enzyme on the membrane was about 1 month at 30°C and ∼ 60 h at 60°C. Maximum GOS production of 27% (w/w) was achieved with 70% lactose conversion from 320 g/L of lactose at pH 4.5 and 60°C. Trisaccharides were the major types of GOS formed and accounted for about 75% of the total GOS produced. Based on these results, immobilized enzyme technology could be applied to GOS production from lactose.  相似文献   
108.
The effects of salt stress (50, 100, and 150 mM NaCl) on the levels of free, bound, and total polyamines were studied in the leaf tissues of salt-tolerant (Coban) and salt-sensitive (Sanbro) cultivars of sunflower (Helianthus annuus L.) plants grown for 15 or 25 days under salinity. The amounts of free, acid-soluble bound, and total spermine increased in leaf tissues of sunflower plants subjected to salt stress while the levels of other polyamines decreased or no significant changes occurred. The increase in some PA titers suggests their potential role in overcoming the adverse effect of salinity stress. The salt sensitivity of the sunflower plants was associated with the excessive accumulation of total polyamines in the leaf tissues of salt-sensitive cultivar (Sanbro) under saline condition. The content of other compounds such as proline, protein, and ions (Na+, K+, Cl-, K+/Na+) in leaf tissue changed depending on salt concentration and the cultivars used.From Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 36–42.Original English Text Copyright © 2005 by Mutlu, Bozcuk.This article was presented by the authors in English.  相似文献   
109.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   
110.
Epilobium angustifolium L. (fireweed) is a medicinal plant that has been used to treat diarrhea, mucous colitis, irritable-bowel syndrome, skin problems, prostate problems, menstrual disorders, asthma, whooping cough, and hiccups. A highly efficient and rapid regeneration system via multiple shoot formation was developed for fireweed. Explants (leaf, petiole, root, and stem segments) excised from sterile seedlings were cultured on medium supplemented with different concentrations and combinations of various plant growth regulators. Explant browning, a major problem for regeneration, was overcome by adding 100 mg/l ascorbic acid to all prepared media containing growth regulator combinations. Root explants formed more shoots than other explants. Best shoot proliferation was obtained from root explants cultured on media with 0.1 mg/l BA and 0.5 mg/l IAA. Regenerated shoots were transferred to rooting media containing different concentrations of IAA, IBA, NAA or 2,4-D. Most shoots developed roots on medium with 0.5 mg/l IAA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 3 weeks they were planted in to plastic pots containing potting soil and maintained in the plant growth room.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号