首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   17篇
  208篇
  2021年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   12篇
  2012年   14篇
  2011年   12篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   2篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
2.
Progress on reducing nutrient loss from annual croplands has been hampered by perceived conflicts between short‐term profitability and long‐term stewardship, but these may be overcome through strategic integration of perennial crops. Perennial biomass crops like switchgrass can mitigate nitrate‐nitrogen (NO3‐N) leaching, address bioenergy feedstock targets, and – as a lower‐cost management alternative to annual crops (i.e., corn, soybeans) – may also improve farm profitability. We analyzed publicly available environmental, agronomic, and economic data with two integrated models: a subfield agroecosystem management model, Landscape Environmental Assessment Framework (LEAF), and a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC). We constructed a factorial combination of profitability and NO3‐N leaching thresholds and simulated targeted switchgrass integration into corn/soybean cropland in the agricultural state of Iowa, USA. For each combination, we modeled (i) area converted to switchgrass, (ii) switchgrass biomass production, and (iii) NO3‐N leaching reduction. We spatially analyzed two scenarios: converting to switchgrass corn/soybean cropland losing >US$ 100 ha?1 and leaching >50 kg ha?1 (‘conservative’ scenario) or losing >US$ 0 ha?1 and leaching >20 kg ha?1 (‘nutrient reduction’ scenario). Compared to baseline, the ‘conservative’ scenario resulted in 12% of cropland converted to switchgrass, which produced 11 million Mg of biomass and reduced leached NO3‐N 18% statewide. The ‘nutrient reduction’ scenario converted 37% of cropland to switchgrass, producing 34 million Mg biomass and reducing leached NO3‐N 38% statewide. The opportunity to meet joint goals was greatest within watersheds with undulating topography and lower corn/soybean productivity. Our approach bridges the scales at which NO3‐N loss and profitability are usually considered, and is informed by both mechanistic and empirical understanding. Though approximated, our analysis supports development of farm‐level tools that can identify locations where both farm profitability and water quality improvement can be achieved through the strategic integration of perennial vegetation.  相似文献   
3.
The eleven predicted gene products of the Agrobacterium tumefaciens virB operon are believed to form a transmembrane pore complex through which T-DNA export occurs. The VirB10 protein is required for virulence and is a component of an aggregate associated with the membrane fraction of A. tumefaciens. Removal of the putative membrane-spanning domain (amino acids 22 through 55) disrupts the membrane topology of VirB10 (J. E. Ward, E. M. Dale, E. W. Nester, and A. N. Binns, J. Bacteriol. 172:5200-5210, 1990). Deletion of the sequences encoding amino acids 22 to 55 abolishes the ability of plasmid-borne virB10 to complement a null mutation in the virB10 gene, suggesting that the proper topology of VirB10 in the membrane may indeed play a crucial role in T-DNA transfer to the plant cell. Western blot (immunoblot) analysis indicated that the observed loss of virulence could not be attributed to a decrease in the steady-state levels of the mutant VirB10 protein. Although the deletion of the single transmembrane domain would be expected to perturb membrane association, VirB10 delta 22-55 was found exclusively in the membrane fraction. Urea extraction studies suggested that this membrane localization might be the result of a peripheral membrane association; however, the mutant protein was found in both inner and outer membrane fractions separated by sucrose density gradient centrifugation. Both wild-type VirB10 and wild-type VirB9 were only partially removed from the membranes by extraction with 1% Triton X-100, while VirB5 and VirB8 were Triton X-100 soluble. VirB11 was stripped from the membranes by 6 M urea but not by a more mild salt extraction. The fractionation patterns of VirB9, VirB10, and VirB11 were not dependent on each other or on VirB8 or VirD4. The observed tight association of VirB9, VirB10, and VirB11 with the membrane fraction support the notion that these proteins may exist as components of multiprotein pore complexes, perhaps spanning both the inner and outer membranes of Agrobacterium cells.  相似文献   
4.
Western equine encephalitis in avian populations in North Dakota, 1975   总被引:2,自引:0,他引:2  
The involvement of wild birds in western equine encephalitis (WEE) and St. Louis encephalitis (SLE) virus activity in the Red River valley area of North Dakota (USA) during a WEE epidemic was investigated in August 1975. Free-ranging birds were captured with mist nets and nestlings by hand. Virologic and serologic results indicated that a similar rate of WEE virus activity occurred throughout Richland County and between permanent and summer resident birds. The rate of SLE virus activity in the birds of Richland County was lower than for WEE virus, but the SLE antibody prevalence was greater in rural areas than within urban locations. Seven of the nine WEE virus isolations were from nestling birds of four different species; the remaining two from adults of two different species. Overall prevalence of neutralizing (N) antibody against WEE virus was 5% in nestling and 14% in adult birds but was the opposite for N antibody against SLE virus, 17% in nestling and 5% in adult birds. Differences between the two viruses in the presence and persistence of maternal N antibody or differential mortality in nestling birds may have caused the disparity in antibody prevalences.  相似文献   
5.
BackgroundAcute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis.MethodsWe investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses.ResultsOf 75 recruited patients (males 63), aged 5–63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE.Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10–1·36) and 11·4 U/g Hb (6·67–16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36–5·54, p<0.01) and 12·0 (8·1–17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn.ConclusionsIn Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities.Trial registrationThe trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).  相似文献   
6.
Lipoic acid was recently demonstrated to improve endothelial dysfunction or retinopathy not only in rats but also in diabetic patients. We tested the hypothesis that R-(+)-alpha-lipoic acid (LA) directly affects human endothelial cell (EC) function (e.g., apoptosis, proliferation, and protein expression), independent of the cells' vascular origin. Macrovascular EC (macEC), isolated from umbilical (HUVEC) and adult saphenous veins and from aortae, as well as microvascular EC (micEC) from retinae, skin, and uterus, were exposed to LA (1 mumol/l-1 mmol/l) with/without different stimuli (high glucose, TNF-alpha, VEGF, wortmannin, LY-294002). Apoptosis, proliferation, cell cycle distribution, and protein expression were determined by DNA fragmentation assays, [(3)H]thymidine incorporation, FACS, and Western blot analyses, respectively. In macro- and microvascular EC, LA (1 mmol/l) reduced (P < 0.05) basal (macEC, -36 +/- 4%; micEC, -46 +/- 6%) and stimulus-induced (TNF-alpha: macEC, -75 +/- 11%; micEC, -68 +/- 13%) apoptosis. In HUVEC, inhibition of apoptosis by LA (500 mumol/l) was paralleled by reduction of NF-kappaB. LA's antiapoptotic activity was reduced by PI 3-kinase inhibitors (wortmannin, LY-294002), being in line with LA-induced Akt phosphorylation (Ser(437), +159 +/- 43%; Thr(308), +98 +/- 25%; P < 0.01). LA (500 mumol/l) inhibited (P < 0.001) proliferation of macEC (-29 +/- 3%) and micEC (-29 +/- 3%) by arresting the cells at the G(1)/S transition due to an increased ratio of cyclin E/p27(Kip) (4.2-fold), upregulation of p21(WAF-1/Cip1) (+104 +/- 21%), and reduction of cyclin A (-32 +/- 11%), of hyperphosphorylated retinoblastoma protein (macEC: -51 +/- 7%; micEC: -50 +/- 15%), and of E2F-1 (macEC: -48 +/- 3%; micEC: -31 +/- 10%). LA's ability to inhibit apoptosis and proliferation of ECs could beneficially affect endothelial dysfunction, which precedes manifestation of late diabetic vascular complications.  相似文献   
7.
Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.  相似文献   
8.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   
9.
Malaria morbidity and mortality have decreased gradually in the Greater Mekong Subregion (GMS). Presently, WHO sets a goal to eliminate malaria by 2030 in the GMS. However, drug-resistant malaria has been reported from several endemic areas. To achieve the goal of elimination, the status of the emergence and spread of drug resistance should be monitored. In this study, the genotype of the Plasmodium falciparum chloroquine (CQ) resistance transporter gene (pfcrt) and 6 microsatellite DNA loci flanking the gene were examined. P. falciparum isolates (n?=?136) was collected from malaria patients in Thailand (n?=?50, 2002–2005), Vietnam (n?=?39, 2004), Laos (n?=?15, 2007) and Cambodia (n?=?32, 2009). Amino acid sequences at codons 72–76 on the gene were determined. All of the isolates from Thailand were CQ-resistant (CVIET), as were all of the isolates from Cambodia (CVIET, CVIDT). Thirteen of the 15 isolates (87%) from Laos were CQ-resistant (CVIET, CVIDT), whereas the other 2 (13%) were CQ-susceptible (CVMNK). In contrast, 27 of the 39 isolates (69%) from Vietnam were CQ-susceptible (CVMNK), whereas the other 12 (31%) were CQ-resistant (CVIET, CVIDT, CVMDT) or mixed (CVMNK/CVIDT). The mean of expected heterozygosity of the microsatellite loci was 0.444 in the Thai population, 0.482 in the Cambodian population, and 0.734 in the Vietnamese population. Genetic diversity in the Thai population was significantly lower than that in the Vietnamese population. These results suggested that chloroquine selective pressure on P. falciparum populations is heterogeneous in the GMS. Therefore, further examination to understand the mechanisms behind the emergence and spread of drug-resistant malaria are needed.  相似文献   
10.
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号